001005435 001__ 1005435
001005435 005__ 20250129092450.0
001005435 0247_ $$2doi$$a10.1109/TQE.2023.3255743
001005435 0247_ $$2Handle$$a2128/34437
001005435 0247_ $$2WOS$$aWOS:001363356900001
001005435 037__ $$aFZJ-2023-01472
001005435 041__ $$aEnglish
001005435 082__ $$a621.3
001005435 1001_ $$0P:(DE-Juel1)170099$$aHader, Fabian$$b0$$eCorresponding author
001005435 245__ $$aOn Noise-Sensitive Automatic Tuning of Gate-Defined Sensor Dots
001005435 260__ $$aNew York, NY$$bIEEE$$c2023
001005435 3367_ $$2DRIVER$$aarticle
001005435 3367_ $$2DataCite$$aOutput Types/Journal article
001005435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687431339_4327
001005435 3367_ $$2BibTeX$$aARTICLE
001005435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005435 3367_ $$00$$2EndNote$$aJournal Article
001005435 520__ $$aIn gate-defined quantum dot systems, the conductance change of electrostatically coupled sensor dots allows the observation of the quantum dots' charge and spin states. Therefore, the sensor dots must be optimally sensitive to changes in its electrostatic environment. A series of conductance measurements varying the two sensor-dot-forming barrier gate voltages serve to tune the dot into a corresponding operating regime. In this paper, we analyze the noise characteristics of the measured data and define a criterion to identify continuous regions with a sufficient signal-gradient-to-noise ratio. Hence, accurate noise estimation is required when identifying the optimal operating regime. Therefore, we evaluate several existing noise estimators, modify them for 1D data, optimize their parameters, and analyze their quality based on simulated data. The estimator of Chen et al. [1] turns out to be best suited for our application concerning minimally scattering results. Furthermore, using this estimator in an algorithm for flank-of-interest classification in measured data shows the relevance and applicability of our approach.
001005435 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001005435 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001005435 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005435 7001_ $$0P:(DE-Juel1)133952$$aVogelbruch, Jan$$b1
001005435 7001_ $$0P:(DE-Juel1)172767$$aHumpohl, Simon$$b2
001005435 7001_ $$00000-0002-5177-6162$$aHangleiter, Tobias$$b3
001005435 7001_ $$0P:(DE-Juel1)180232$$aEguzo, Chimezie$$b4
001005435 7001_ $$0P:(DE-Juel1)180765$$aHeinen, Stefan$$b5
001005435 7001_ $$0P:(DE-Juel1)7756$$aMeyer, Stefanie$$b6
001005435 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b7
001005435 773__ $$0PERI:(DE-600)3035782-2$$a10.1109/TQE.2023.3255743$$gp. 1 - 19$$p5500218$$tIEEE transactions on quantum engineering$$v4$$x2689-1808$$y2023
001005435 8564_ $$uhttps://juser.fz-juelich.de/record/1005435/files/On_Noise-Sensitive_Automatic_Tuning_of_Gate-Defined_Sensor_Dots-1.pdf$$yOpenAccess
001005435 8767_ $$d2023-04-11$$eAPC$$jPublish and Read
001005435 909CO $$ooai:juser.fz-juelich.de:1005435$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170099$$aForschungszentrum Jülich$$b0$$kFZJ
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133952$$aForschungszentrum Jülich$$b1$$kFZJ
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172767$$aForschungszentrum Jülich$$b2$$kFZJ
001005435 9101_ $$0I:(DE-588b)36225-6$$60000-0002-5177-6162$$aRWTH Aachen$$b3$$kRWTH
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180232$$aForschungszentrum Jülich$$b4$$kFZJ
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180765$$aForschungszentrum Jülich$$b5$$kFZJ
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7756$$aForschungszentrum Jülich$$b6$$kFZJ
001005435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b7$$kFZJ
001005435 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001005435 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001005435 9141_ $$y2023
001005435 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005435 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001005435 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001005435 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005435 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-10
001005435 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-10
001005435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-03
001005435 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:35Z
001005435 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:35Z
001005435 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:53:35Z
001005435 920__ $$lyes
001005435 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001005435 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001005435 9801_ $$aAPC
001005435 9801_ $$aFullTexts
001005435 980__ $$ajournal
001005435 980__ $$aVDB
001005435 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001005435 980__ $$aI:(DE-Juel1)PGI-11-20170113
001005435 980__ $$aAPC
001005435 980__ $$aUNRESTRICTED
001005435 981__ $$aI:(DE-Juel1)PGI-4-20110106