001     1005448
005     20240712101053.0
024 7 _ |a 10.5194/acp-23-3147-2023
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/34121
|2 Handle
024 7 _ |a WOS:000946512800001
|2 WOS
037 _ _ |a FZJ-2023-01479
082 _ _ |a 550
100 1 _ |a Carlsson, Philip T. M.
|0 P:(DE-Juel1)178087
|b 0
|e Corresponding author
245 _ _ |a Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO 3 oxidation
260 _ _ |a Katlenburg-Lindau
|c 2023
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679396865_31579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO2 isomers, unimolecular reactions of nitrate RO2 radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12 h) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vereecken, Luc
|0 P:(DE-Juel1)167140
|b 1
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 2
700 1 _ |a Bernard, François
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brown, Steven S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brownwood, Bellamy
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cho, Changmin
|0 P:(DE-Juel1)174162
|b 6
700 1 _ |a Crowley, John N.
|0 0000-0001-8669-0230
|b 7
700 1 _ |a Dewald, Patrick
|0 0000-0001-6922-3016
|b 8
700 1 _ |a Edwards, Peter M.
|0 0000-0002-1076-6793
|b 9
700 1 _ |a Friedrich, Nils
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Fry, Juliane
|0 P:(DE-Juel1)169294
|b 11
700 1 _ |a Hallquist, Mattias
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Hantschke, Luisa
|0 P:(DE-Juel1)176215
|b 13
700 1 _ |a Hohaus, Thorsten
|0 P:(DE-Juel1)161442
|b 14
700 1 _ |a Kang, Sungah
|0 P:(DE-Juel1)169671
|b 15
700 1 _ |a Liebmann, Jonathan
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Mayhew, Alfred W.
|0 0000-0001-5277-1331
|b 17
700 1 _ |a Mentel, Thomas
|0 P:(DE-Juel1)16346
|b 18
700 1 _ |a Reimer, David
|0 P:(DE-Juel1)171432
|b 19
|u fzj
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 20
|u fzj
700 1 _ |a Shenolikar, Justin
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 22
700 1 _ |a Tsiligiannis, Epameinondas
|0 0000-0002-5100-0858
|b 23
700 1 _ |a Wu, Rongrong
|0 P:(DE-Juel1)173991
|b 24
|u fzj
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 25
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 26
|u fzj
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 27
|e Corresponding author
773 _ _ |a 10.5194/acp-23-3147-2023
|g Vol. 23, no. 5, p. 3147 - 3180
|0 PERI:(DE-600)2069847-1
|n 5
|p 3147 - 3180
|t Atmospheric chemistry and physics
|v 23
|y 2023
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/1005448/files/Invoice_Helmholtz-PUC-2023-31.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1005448/files/acp-23-3147-2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005448
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178087
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)176215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)161442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)169671
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)16346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)171432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)173991
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)16324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)7363
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21