001005453 001__ 1005453
001005453 005__ 20231027114358.0
001005453 0247_ $$2doi$$a10.1021/acsnano.2c08096
001005453 0247_ $$2ISSN$$a1936-0851
001005453 0247_ $$2ISSN$$a1936-086X
001005453 0247_ $$2Handle$$a2128/34207
001005453 0247_ $$2pmid$$a36913300
001005453 0247_ $$2WOS$$aWOS:000953440900001
001005453 037__ $$aFZJ-2023-01482
001005453 082__ $$a540
001005453 1001_ $$0P:(DE-HGF)0$$aKante, Mohana V.$$b0
001005453 245__ $$aA High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation
001005453 260__ $$aWashington, DC$$bSoc.$$c2023
001005453 3367_ $$2DRIVER$$aarticle
001005453 3367_ $$2DataCite$$aOutput Types/Journal article
001005453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679992440_7820
001005453 3367_ $$2BibTeX$$aARTICLE
001005453 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005453 3367_ $$00$$2EndNote$$aJournal Article
001005453 520__ $$aHigh-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition–function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
001005453 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005453 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005453 7001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz L.$$b1
001005453 7001_ $$0P:(DE-HGF)0$$aNi, Shu$$b2
001005453 7001_ $$0P:(DE-HGF)0$$avan den Bosch, Iris C. G.$$b3
001005453 7001_ $$0P:(DE-HGF)0$$avan der Minne, Emma$$b4
001005453 7001_ $$0P:(DE-Juel1)187578$$aHeymann, Lisa$$b5
001005453 7001_ $$00000-0002-2622-5166$$aFalling, Lorenz J.$$b6
001005453 7001_ $$00000-0002-5555-7055$$aGauquelin, Nicolas$$b7
001005453 7001_ $$00000-0001-9871-0016$$aTsvetanova, Martina$$b8
001005453 7001_ $$0P:(DE-HGF)0$$aCunha, Daniel M.$$b9
001005453 7001_ $$00000-0001-5478-7329$$aKoster, Gertjan$$b10
001005453 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b11
001005453 7001_ $$0P:(DE-Juel1)164137$$aNemšák, Slavomír$$b12
001005453 7001_ $$aHahn, Horst$$b13
001005453 7001_ $$00000-0003-0151-9253$$aVelasco Estrada, Leonardo$$b14
001005453 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b15$$eCorresponding author
001005453 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.2c08096$$gp. acsnano.2c08096$$n6$$p5329–5339$$tACS nano$$v17$$x1936-0851$$y2023
001005453 8564_ $$uhttps://juser.fz-juelich.de/record/1005453/files/acsnano.2c08096.pdf$$yOpenAccess
001005453 909CO $$ooai:juser.fz-juelich.de:1005453$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b1$$kFZJ
001005453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187578$$aForschungszentrum Jülich$$b5$$kFZJ
001005453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b11$$kFZJ
001005453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b15$$kFZJ
001005453 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005453 9141_ $$y2023
001005453 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
001005453 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005453 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
001005453 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005453 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2023-10-25
001005453 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2023-10-25
001005453 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001005453 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001005453 980__ $$ajournal
001005453 980__ $$aVDB
001005453 980__ $$aUNRESTRICTED
001005453 980__ $$aI:(DE-Juel1)PGI-7-20110106
001005453 980__ $$aI:(DE-82)080009_20140620
001005453 9801_ $$aFullTexts