001     1005453
005     20231027114358.0
024 7 _ |a 10.1021/acsnano.2c08096
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/34207
|2 Handle
024 7 _ |a 36913300
|2 pmid
024 7 _ |a WOS:000953440900001
|2 WOS
037 _ _ |a FZJ-2023-01482
082 _ _ |a 540
100 1 _ |a Kante, Mohana V.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679992440_7820
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition–function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Weber, Moritz L.
|0 P:(DE-Juel1)172856
|b 1
700 1 _ |a Ni, Shu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van den Bosch, Iris C. G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a van der Minne, Emma
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heymann, Lisa
|0 P:(DE-Juel1)187578
|b 5
700 1 _ |a Falling, Lorenz J.
|0 0000-0002-2622-5166
|b 6
700 1 _ |a Gauquelin, Nicolas
|0 0000-0002-5555-7055
|b 7
700 1 _ |a Tsvetanova, Martina
|0 0000-0001-9871-0016
|b 8
700 1 _ |a Cunha, Daniel M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Koster, Gertjan
|0 0000-0001-5478-7329
|b 10
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 11
700 1 _ |a Nemšák, Slavomír
|0 P:(DE-Juel1)164137
|b 12
700 1 _ |a Hahn, Horst
|b 13
700 1 _ |a Velasco Estrada, Leonardo
|0 0000-0003-0151-9253
|b 14
700 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 15
|e Corresponding author
773 _ _ |a 10.1021/acsnano.2c08096
|g p. acsnano.2c08096
|0 PERI:(DE-600)2383064-5
|n 6
|p 5329–5339
|t ACS nano
|v 17
|y 2023
|x 1936-0851
856 4 _ |u https://juser.fz-juelich.de/record/1005453/files/acsnano.2c08096.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005453
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)187578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)159254
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21