
Investigation of Exponential Time Differencing Schemes for
Advection-Diffusion-Reaction Problems in the Presence of Significant

Advection

Björn Gernot Müller

A Thesis Presented to the Graduate Faculty
in Partial Fulfillment of the Requirements for the Degree

Master of Science

University of Louisiana at Lafayette
Fall 2022

APPROVED:

Bruce A. Wade, Chair
Department of Mathematics

Xiang-Sheng Wang
Department of Mathematics

Kevin Zito
Department of Mathematics

Mary Farmer-Kaiser
Dean of the Graduate School

© Björn Gernot Müller

2022

All Rights Reserved

Abstract

Advection-diffusion-reaction equations are partial differential equations (PDEs)

with various applications across the sciences. Exponential time differencing schemes

are efficient methods of numerically solving PDEs of this type. We consider an

exponential time differencing scheme called ETD-RDP-IF that approximates the

arising matrix exponentials using a rational approximation with real distinct poles and

employs a dimensional splitting technique to improve computational performance.

The scheme has originally been derived for systems without advection. We show that

the derivation still holds in the presence of advection and prove new results on the

second-order temporal accuracy of the scheme. In numerical experiments, we

investigate the real-world performance of the scheme depending on the strength of

advection as quantified by the Péclet and Courant numbers. We confirm

second-order convergence in space and time for linear problems with smooth initial

condition and observe order reduction for non-smooth initial conditions. We further

find that upwind-biased discretizations of advection improve computational efficiency.

A comparison with an ETD scheme that uses Krylov-subspace approximations of the

matrix exponentials shows that the Krylov-subspace technique has a better

computational performance in low-advection regimes. Outside of these regimes,

ETD-RDP-IF is more robust and therefore more widely applicable.

iii

Acknowledgments

I am highly grateful to my advisor, Dr. Bruce Wade, whose ideas allowed me to

explore and whose insight and guidance gave me the direction to finish this work.

With his ever-lasting optimism and encouragement, he helped me overcome various

kinds of hurdles along the way.

I want to thank my committee, Dr. Xiang-Sheng Wang and Dr. Kevin Zito, for

taking the time to review multiple drafts of my thesis and their helpful suggestions and

encouragement.

I also wish to express my deep gratitude to Dr. Andreas Kleefeld, especially for

his constant faith in me, guidance, and support throughout this journey. Not only has

he introduced me to the topic and taught me what I needed to know, he also

encouraged and enabled my stay at the University of Louisiana at Lafayette.

I want to thank Dr. Gerhard Dikta for initiating the cooperation between Faculty

9 (Medical Engineering and Technomathematics) at FH Aachen University of Applied

Sciences and the Department of Mathematics at the University of Louisiana at

Lafayette and his great help in organizing my stay and studies at the University of

Louisiana at Lafayette.

I am very grateful to Dr. Emmanuel Asante-Asamani, whose PhD dissertation

this manuscript builds upon and who helped significantly shape the direction of this

work and provided detailed ideas and invaluable suggestions.

iv

Table of Contents

Abstract .. iii

Acknowledgments ... iv

List of Tables ... vii

List of Figures ... viii

List of Abbreviations... x

1 Introduction... 1
1.1 Applications of Advection-Diffusion-Reaction Equations 1
1.2 Problem Statement... 1
1.3 Significant Advection .. 4
1.4 ETD Methods .. 5

2 Methods... 8
2.1 Mathematical Background... 8

2.1.1 Finite Difference Spatial Discretization of Advection-Diffusion-
Reaction Systems ... 8

2.1.2 Properties of the Matrix Exponential .. 24
2.2 ETD-RDP-IF ... 26

2.2.1 Dimensional Splitting ... 26
2.2.2 Discretization in Time ... 31
2.2.3 Approximating the Matrix Exponential ... 38
2.2.4 Accuracy .. 52
2.2.5 Partial Fraction Decomposition ... 54
2.2.6 Unwinding the Dimensional Splitting ... 56
2.2.7 Accuracy of the Final Scheme ... 59
2.2.8 Numerical Implementation ... 61

2.3 Krylov-EETD ... 62

3 Numerical Experiments.. 68
3.1 Quantities Concerning Advection .. 68

3.1.1 Cell Péclet Number ... 68
3.1.2 CFL Condition ... 70

3.2 Pure Advection Equation .. 72
3.2.1 Wave-Packet Initial Condition .. 73
3.2.2 Boxcar Initial Condition.. 79

3.3 Benchmark Example with Known Exact Solution................................... 86
3.4 Schnakenberg Problem ... 96
3.5 Brusselator ADR Model ...106

v

4 Conclusion and Future Work...111

Bibliography...115

Biographical Sketch ..121

vi

List of Tables

Table 1. Errors and computation time for the three-dimensional benchmark prob-
lem (30) with different types of spatial and temporal discretizations on
different grids. CPU time is for a single core of an Intel(R) Xeon(R) Gold
6248 CPU @ 2.50GHz. ... 88

Table 2. Errors and computation time for the two-dimensional benchmark prob-
lem (31) with different types of spatial and temporal discretizations on
different grids. CPU time is for a single core of an Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz. ... 95

Table 3. Errors and computation time for the one-dimensional benchmark prob-
lem (32) with different types of spatial and temporal discretizations on
different grids. CPU time is for a single core of an Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz. ... 96

vii

List of Figures

Figure 1. 5-point stencil about Uij ... 21

Figure 2. Errors of ETD-RDP-IF with central difference discretization for the
advection equation (26) with wave-packet initial condition (28) and
varying advection velocities a. ... 75

Figure 3. Solution of the advection equation (26) with wave-packet initial con-
dition (28) for a = 1000 at T = 1. The numerical solution is produced
by ETD-RDP-IF with central difference discretization and h = 0.01,
k = 0.0005. .. 76

Figure 4. Numerical orders of convergence of ETD-RDP-IF with central differ-
ence discretization for the advection equation (26) with wave-packet
initial condition (28) and varying advection velocities a. 78

Figure 5. Solution of the advection equation (26) with boxcar initial condition
(29) for a = 1 at T = 0.1. Blue: exact solution, orange: numerical
solution. The numerical solution is produced by ETD-RDP-IF with
central difference discretization. .. 80

Figure 6. Errors of ETD-RDP-IF with central difference discretization for the
advection equation (26) with boxcar initial condition (29) and varying
advection velocities a... 82

Figure 7. Solution of the advection equation (26) with boxcar initial condition
(29) for a = 0.01 at T = 0.1. Blue: exact solution, orange: numerical
solution. The numerical solution is produced by ETD-RDP-IF with
central difference discretization. .. 84

Figure 8. Errors of ETD-RDP-IF with different spatial discretizations for the ad-
vection equation (26) with boxcar initial condition (29). 85

Figure 9. Efficiency of ETD-RDP-IF with different spatial discretizations for the
advection equation (26) with boxcar initial condition (29). 85

Figure 10. Error comparison of ETD-RDP-IF with different spatial discretizations
and Krylov-EETD for the three-dimensional benchmark problem (30). . 89

Figure 11. Runtime comparison of ETD-RDP-IF with different spatial discretiza-
tions and Krylov-EETD for the three-dimensional benchmark problem
(30) with a = 3. .. 91

viii

Figure 12. Efficiency comparison of ETD-RDP-IF with different spatial discretiza-
tions and Krylov-EETD for the three-dimensional benchmark problem
(30). ... 93

Figure 13. Numerical solution of the concentration profiles of species u1 for the
two-dimensional Schnakenberg reaction-diffusion model at different
points in time. The numerical solutions were obtained with ETD-
RDP-IF with central difference discretization... 98

Figure 14. Aerial views of Figure 13 ... 99

Figure 15. Error comparison of ETD-RDP-IF with different spatial discretizations
and Krylov-EETD for the Schnakenberg ADR model (33). Note that
where no values for Krylov-EETD are shown, computation time was
infeasible or errors were exceedingly large. ..103

Figure 16. Runtime comparison of ETD-RDP-IF with different spatial discretiza-
tions and Krylov-EETD for the Schnakenberg ADR model (33). Note
that where no values for Krylov-EETD are shown, computation time
was infeasible or errors were exceedingly large.105

Figure 17. Error comparison of ETD-RDP-IF with central difference discretiza-
tion and Krylov-EETD for the Brusselator ADR model (34). Note that
where no values for Krylov-EETD are shown, computation time was
infeasible or errors were exceedingly large. ..107

Figure 18. Runtime comparison of ETD-RDP-IF with central difference discretiza-
tion and Krylov-EETD for the Brusselator ADR model (34). Note that
where no values for Krylov-EETD are shown, computation time was
infeasible or errors were exceedingly large. ..109

ix

List of Abbreviations

ADR Advection-Diffusion-Reaction

CFL Courant-Friedrichs-Lewy

CN Crank-Nicolson

EETD Extrapolated Exponential Time Differencing

ETD Exponential Time Differencing

ETD-RDP-IF Exponential Time Differencing Scheme with Real Distinct Poles

Approximation and Integrating Factor Dimensional Splitting

Technique

IBVP Initial Boundary Value Problem

IF Integrating Factor

IMEX Implicit-Explicit

IVP Initial Value Problem

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RDP Real Distinct Poles

RK Runge-Kutta

x

1 Introduction

1.1 Applications of Advection-Diffusion-Reaction Equations

Advection-diffusion-reaction (ADR) equations originally describe how the

concentration of chemical substances (species) in a flowing fluid medium evolve over

time (Hundsdorfer and Verwer 2003; LeVeque 2007). This makes them applicable to

the modeling of a wide range of phenomena. These include air pollution (Verwer

et al. 2002; Lanser and Verwer 1999) and water pollution (e. g., van Herwaarden

1994; James 2002). Combustion processes are described by non-linear ADR

systems (Berestycki 2002; Mickens 2005). The models we implement in this work,

the Schnakenberg (Schnakenberg 1979; Madzvamuse 2006; Fernandes and

Fairweather 2012; Bhatt et al. 2018) and Brusselator (Tyson 1976; Kang and Pesin

2005; Bhatt et al. 2018) models consider chemical reactions in an abstract sense,

having originally been derived from stoichiometric equations and then generalized

into ADR systems.

Beyond this, ADR systems have various applications in biological modeling,

e. g., enzyme kinetics with Michaelis-Menten type equations (Johnson and Goody

2011; Chapwanya et al. 2013; Bhatt and Khaliq 2015; Asante-Asamani et al. 2016)

and pattern formation in biological systems (Turing 1952; Tyson et al. 1999).

1.2 Problem Statement

In this work, we consider systems of time-dependent, semi-linear

advection-diffusion-reaction (ADR) equations of the form

1

∂ui

∂t
= ai · ∇ui +∇ ·Di∇ui + fi(u) , i = 1, . . . , s , (1)

where · denotes the (Euclidean) dot product of two vectors. In this context,

u = u(x, t) = (u1(x, t), . . . , us(x, t))
>, x ∈ Ω, t ∈ (0, T), can be understood as the

concentration function of s species in the domain Ω. Ω = ×d
i=1(αi, αi + ω) ⊂ Rd is a

(hyper-)cube domain, where ω is the length of the sides. The reaction function

F(u) = (f1(u), . . . , fs(u))
> is a possibly non-linear function that we assume to be

sufficiently smooth and bounded on Ω. Di = diag(di1, . . . , did) ∈ Rd×d, i = 1, . . . , s are

diagonal matrices containing diffusion coefficients and are assumed to be constant in

space and time. We require the entries of Di, i = 1, . . . , s to be non-negative in order

to obtain a well-posed problem (cf. Hundsdorfer and Verwer 2003 p.13). This allows

for a certain kind of anisotropic diffusion where the diffusion coefficients along the

different coordinate axes differ. ai = (ai1, . . . , aid)
> ∈ Rd is the advection vector for the

i-th species.

We consider four different types of boundary conditions for such systems:

1. Homogeneous Dirichlet:

u(x, t) = 0 ∀x ∈ ∂Ω

2. Vanishing normal derivative:

∂

∂ν
u(x, t) = 0 ∀x ∈ ∂Ω ,

where ν denotes the exterior normal of Ω.

2

3. Homogeneous Neumann:

˚ · (Di∇ui(x, t) + aiui) = 0 ∀x ∈ ∂Ω ,

where ν denotes the exterior normal of Ω.

4. Periodic:

u(x+ nωei, t) = u(x, t) ∀x ∈ Ω, i = 1, . . . , d, n ∈ Z

Remark. The “vanishing normal derivative” boundary condition has been considered

in the literature about advection-diffusion-reaction systems. It has sometimes been

called (e. g., Bhatt et al. 2018) Neumann boundary condition. In the absence of

advection, it is the same as what we refer to as “Neumann” boundary condition.

However, in the presence of advection, the flux across the boundary is not equal to

the normal derivative, so a vanishing normal derivative is not equivalent to zero flux

across the boundary. To the best of our knowledge, Neumann conditions refer to the

flux. Therefore, we chose the naming as described above.

An initial condition which is assumed to be compatible with the boundary

condition, is given by u(x, 0) = u0(x) for x ∈ Ω. Note that, numerically, we will

consider initial conditions that are incompatible with the boundary conditions as well.

For theoretical considerations, we limit ourselves to compatible initial and boundary

conditions.

3

1.3 Significant Advection

The strength of advection in ADR systems can be quantified by the so-called

Péclet number. Consider a one-dimensional problem with a single species

∂u

∂t
= aux + duxx + f(u) (2)

with suitable boundary conditions on a domain Ω = (ω, ω + L). The Péclet number is

defined as

P =
aL

d
.

(see Gommes and Tharakan (2020) and references therein). L is the characteristic

length of the problem. As explained in Gommes and Tharakan (2020), the Péclet

number describes the relation between the orders of magnitude of the advection and

diffusion term. The relevance of L is that it incorporates the scale dependence of this

ratio.

Note that the definition given here can be extended to higher-dimensional

problems and multiple species in various ways. In this work, we will only consider

component-wise Péclet numbers.

Two regimes are usually distinguished. High Péclet numbers (P � 1) mean

that advection is dominant relative to the diffusion whereas low Péclet numbers

(P � 1) mean that diffusion is dominant.

In this work, we aim to consider problems with significant advection, i. e.,

where diffusion is at most of the same order of magnitude as advection (P & 1).

4

1.4 ETD Methods

A common approach to solving time-dependent PDEs is the method of lines.

This approach transforms the (system of) PDE(s) into a system of ordinary differential

equations (ODEs) by first performing a discretization in space, i. e., in particular, of

the spatial derivatives. The initial boundary value problem (IBVP) becomes an initial

value problem (IVP).

The discretized differential operators make the ODE system stiff (Hundsdorfer

and Verwer 2003). Explicit schemes suffer from stability issues when applied to stiff

ODEs, requiring short time steps that make computation infeasible. To solve this

issue, various implicit and semi-implicit schemes have been developed. Fully-implicit

schemes like Runge-Kutta and BDF schemes are suitable for solving stiff ODEs.

However, they require solving systems of non-linear equations in each time step

when applied to non-linear ODEs, which reduces performance significantly. Various

schemes have been suggested to resolve these performance penalties, e. g., Chen

and Shen (1998) and Gear and Kevrekidis (2003).

In the semi-linear problem we are considering, the resulting ODEs are of the

form

ut +Mu = f(u)

where M is a linear operator and f is a possibly non-linear function of u.

For this case, various methods have been developed that use this structure to

avoid having to solve non-linear systems of equations. Since the stiffness is

contained inside the linear part of the ODE, many schemes solve the linear part

5

implicitly and treat the non-linear part explicitly (Hundsdorfer and Verwer 2003).

Examples of these so-called linearly implicit or implicit-explicit (IMEX) schemes

include Ascher et al. (1995), Akrivis et al. (1999), and Voss and Khaliq (1999).See

Hundsdorfer and Verwer (2003) for a survey of IMEX methods.

Another class of schemes that rely on the semi-linear structure are called

exponential time differencing schemes. These solve the linear part exactly in terms of

exponentials, using Duhamel’s principle. A seminal paper on ETD schemes is Cox

and Matthews (2002) who used a Runge-Kutta (RK) type approach for constructing

higher-order ETD schemes, called ETD-RK. Kassam and Trefethen (2005) and

Hochbruck and Ostermann (2005) performed further analysis and introduced various

improvements to the original method.

Cox and Matthews (2002) and Hochbruck and Ostermann (2005) did not

consider the evaluation of the (matrix) exponentials that arise in ETD schemes,

instead using standard implementations for numerical computations. Kassam and

Trefethen (2005) suggested a contour integral technique to evaluate the exponentials.

Since then, various ways of approximating the matrix exponentials have been

proposed. Recently, Bhatt et al. (2018) used a Krylov-subspace approximation.

Khaliq et al. (2009) approximated the exponentials arising in ETD-RK schemes

with low-order Padé approximations. This approach was also followed by Kleefeld

et al. (2012) who used a Padé [1,1] approximation to obtain an ETD-Crank-Nicolson

(ETD-CN) scheme. Yousuf et al. (2012) applied a Padé [0,2] approximation instead,

making the scheme L-stable, and hence better at damping out spurious oscillations.

6

As Asante-Asamani (2016) notes, the Padé [0,2] approximation has complex

poles, which makes a partial fraction decomposition computationally expensive.

Instead, he proposes to approximate the exponential with a rational function that has

real and distinct poles, following the approach of Voss and Khaliq (1996).

Furthermore, Asante-Asamani (2016) introduced an operator splitting technique

similar to the one used by Bhatt and Khaliq (2015). This scheme, named

ETD-RDP-IF or short ETD-RDP, was presented again in Asante-Asamani et al.

(2020) with more details on the potential for highly efficient implementation.

In this work, we further consider the ETD-RDP scheme introduced by

Asante-Asamani (2016). It was originally applied only to reaction-diffusion equations

without an advective term. We, therefore, show the derivation of the scheme in the

presence of advection (Chapter 2). While doing so, we show some new results on the

accuracy of the scheme in situations where the linear part of the differential equation

involves a non-invertible matrix. We further evaluate the performance with varying

amounts of advection present for exemplary equations from the literature and give a

comparison of ETD-RDP to the Krylov-EETD scheme described in Bhatt et al. (2018)

(Chapter 3). Finally, we give a conclusion in Chapter 4.

7

2 Methods

2.1 Mathematical Background

2.1.1 Finite Difference Spatial Discretization of Advection-Diffusion-Reaction Sys-

tems

ETD schemes use a method-of-lines approach (LeVeque 2007). This means

that the IBVP (1) is discretized in space first, and the resulting ODE and initial value

problem (IVP) are solved afterwards. For the spatial discretization, we will employ

finite difference schemes. In this section, we describe their derivation for a system of

the form (1).

First, the spatial domain Ω is discretized. Recall that we are assuming a

hyper-cube domain, i. e., equal extent in all spatial dimensions. Therefore, choosing

an equidistant grid size h in all d dimensions we obtain a grid with pd points

xi, i = 1, . . . , pd, where p is the number of grid points for each dimension. u is

discretized on these grid points, resulting in a vector U = (U>
1 , . . . ,U

>
pd
)> ∈ Rm,

m = s · pd with Ui ≈ u(xi) ∈ Rs. F(u) is discretized by applying it componentwise to

U, i. e., we define the discretization f(U) ∈ Rm as f(U) = (F(U1)
>, . . . ,F(Upd)

>)>.

The diffusion and advection operators, and thus also their sum, are linear

operators. Therefore, the discretized operator acting on U can be represented as a

matrix M ∈ Rm×m. The boundary conditions we will consider are linear as well,

therefore, they will be discretized in M as well.

Therefore, we obtain an IVP by discretizing Equation (1) in this way:

∂U

∂t
+MU = f(U) , U(0) = U0 . (3)

8

Here, U0 = (u0(x1)
>, . . . ,u0(xpd)

>)> ∈ Rm is the initial condition u0(x) evaluated at

the grid points x1, . . . ,xpd.

2.1.1.1 Derivation. In order to derive the spatial discretization matrix M, we

first assume a one-dimensional problem for a single species, i. e., we consider the

following problem:

∂u(x, t)

∂t
= ã∇u(x, t) + d̃∆u(x, t) + f(u(x, t))

= ãux(x, t) + d̃uxx(x, t) + f(u(x, t)) ,

x ∈ Ω = (xa, xb),

(4)

where ã is the advection velocity and d̃ is the diffusion constant.

In order to be consistent and - regarding implementation - compatible with the

scheme proposed in Asante-Asamani et al. (2020), we wish to consider a

discretization with p grid points. We, therefore, consider an equidistant discretization

of (xa, xb) with p grid points and grid size h. Note that we are not specifying here

whether the endpoints xa and xb are included in our grid or not. This will be discussed

later. For now, the only requirement is equidistant spacing with the grid size h.

Hence, we need to find a discretization for ux and uxx at the grid points

(x1, . . . , xp). Let, as above, Ui ≈ u(xi), i = 1, . . . , p, be the approximation of u(xi). We

can now apply second-order central finite differences to approximate the first and

second spatial derivatives of u. At a given point xi, 2 ≤ i ≤ p− 1, i. e., in the interior of

Ω, we get the following approximations:

9

uxx(xi) ≈
u(xi+1)− 2u(xi) + u(xi−1)

h2
≈ Ui+1 − 2Ui + Ui−1

h2
. (5)

ux(xi) ≈
u(xi+1)− u(xi−1)

2h
≈ Ui+1 − Ui−1

2h
. (6)

We can express this in matrix form, analogously denoting the approximated

derivative Uxx,i ≈ uxx(xi):

−Uxx = −



Uxx,1

Uxx,2

...

Uxx,p−1

Uxx,p


≈ − 1

h2



∗ ∗ . . . ∗ ∗

1 −2 1

.

1 −2 1

∗ ∗ . . . ∗ ∗





U1

U2

...

Up−1

Up


=: B̃U

−Ux = −



Ux,1

Ux,2

...

Ux,p−1

Ux,p


≈ − 1

2h



∗ ∗ . . . ∗ ∗

−1 0 1

.

−1 0 1

∗ ∗ . . . ∗ ∗





U1

U2

...

Up−1

Up


=: C̃U

Note that we flipped the signs of the derivatives so that we can use this to

discretize our reduced problem (4) to the form (3) with the discretization matrix

M̃ = d̃B̃+ ãC̃ (7)

For 2 ≤ i ≤ p− 1, this works without any restrictions as the differential operator

in Equation (1) is the sum of the diffusion and advection operators. However, the first

10

and last rows of M̃ are not yet well-defined, because the above approximation would

yield

uxx(x1) ≈
u(x2)− 2u(x1) + u(x0)

h2
≈ U2 − 2U1 + U0

h2
.

However U0 is not considered in our discretization. Analogously, Up+1 would be

required for approximating uxx(xp).

2.1.1.2 Boundary Conditions. We can deal with this issue by treating the

boundary points according to the respective boundary condition. Note that, above,

we considered the discretization of advection (first-order derivative) and diffusion

(second-order derivative) separately. Some boundary conditions introduce coupling

between the advection and diffusion term, so we can only consider M as a whole.

We start by assuming the following discretization of Ω: X = (x0, . . . , xn)
>

where n = xb−xa

h
, x0 = xa and xn = xb. Here, it is well determined where the n grid

points lie.

Homogeneous Dirichlet. In the homogeneous Dirichlet case, we know

u(xa) = u(xb) = 0. Thus, we set U0 = Un = 0 in the discretization. Therefore,

uxx(x1) ≈
U2 − 2U1 + U0

h2
=

U2 − 2U1

h2

ux(x1) ≈
U2 − U0

2h
=

U2

2h
.

The same holds analogously for ux(xn−1). As a consequence, we need not consider

U0 and Un further, leaving n− 1 points. We therefore consider the grid points

(x1, . . . , xn−1), excluding the boundary points. Therefore, the number of points, p, in

our resulting discretization is p = n− 1, and we can express h = xb−xa

p+1
. Clearly, we

11

applied this to the discretization of diffusion and advection independently, therefore

we can continue to represent M̃ as a sum of B̃ and C̃, namely M̃ = d̃B̃+ ãC̃ where

B̃ = − 1

h2



−2 1

1 −2 1

.

1 −2 1

1 −2


∈ Rp×p

C̃ = − 1

2h



0 1

−1 0 1

.

−1 0 1

−1 0


∈ Rp×p .

Periodic. Periodic boundary conditions prescribe a periodic continuation of the

solution outside of Ω. In particular, this means, for a given grid size h, u(xa) = u(xb),

u(xa+h) = u(xb+h), and u(xa−h) = u(xb−h). Thus, setting U0 = Un, U1 = Un+1 and

U−1 = Un−1, we need to only consider U0, . . . , Un−1, and obtain on the boundaries:

uxx(x0) ≈
U1 − 2U0 + U−1

h2
=

U1 − 2U0 + Un−1

h2

uxx(xn−1) ≈
Un − 2Un−1 + Un−2

h2
=

U0 − 2Un−1 + Un−2

h2

ux(x1) ≈
U2 − U0

2h
=

U2 − Un

2h

ux(xn) ≈
Un+1 − Un−1

2h
=

U1 − Un−1

2h

12

We therefore consider n grid points, including one boundary point. So, we set

p = n, which yields h = xb−xa

p
. This, too, can be applied independently to B̃ and C̃

and we get

B̃ = − 1

h2



−2 1 1

1 −2 1

.

1 −2 1

1 1 −2


∈ Rp×p

C̃ = − 1

2h



0 1 −1

−1 0 1

.

−1 0 1

1 −1 0


∈ Rp×p ,

where M̃ = d̃B̃+ ãC̃.

Vanishing Normal Derivative. For a boundary with vanishing normal derivative,

we use a ghost point approach to obtain a second-order discretization, Since we are

assuming a one-dimensional domain, the exterior normal at x = x0 is ν = −1.

Therefore, the boundary condition can be discretized to

−ux(x0) ≈ −U1 − U−1

2h
!
= 0 . (8)

U−1 is outside of our domain, hence it is called a ghost point. The discretization of the

advection and diffusion terms in x0 gives

d̃uxx(x0) + ãux(x0) ≈ d̃
−U−1 + 2U0 − U1

h2
+ ã

−U−1 + U1

2h
. (9)

13

Combining Equations (8) and (9) yields

d̃uxx(x0) + ãux(x0) ≈ d̃
2U0 − 2U1

h2
.

Clearly, the advection term vanishes on the boundary. Thus, we set the first and last

rows of C̃ to 0. The remaining diffusion term is expressed in terms of points within

our domain only. For this construction, we need U0 and Un, i. e., n+ 1 grid points. We

therefore set p = n+ 1 and h = xb−xa

p−1
. This results in the matrices

B̃ = − 1

h2



−2 2

1 −2 1

.

1 −2 1

2 −2


∈ Rp×p

C̃ = − 1

2h



0 0

−1 0 1

.

−1 0 1

0 0


∈ Rp×p ,

and M̃ = d̃B̃+ ãC̃.

Homogeneous Neumann. Again employing a ghost point approach, we can

derive the combined discretization matrix M̃. The homogeneous Neumann boundary

condition for a single species in one dimension can be discretized to

−d̃
U1 − U−1

2h
− ãU0

!
= 0 .

14

Combining this with Equation (9) yields

d̃uxx(x0) + ãux(x0) ≈

(
2d̃

h2
− 2ã

h
− ã2

d̃

)
U0 −

2d̃

h2
U1 .

The discretization at xp can be derived analogously. The result is the following

discretization matrix:

M̃ =



2d̃
h2 − 2ã

h
− ã2

d̃
− 2d̃

h2

− d̃
h2 − ã

2h
2d̃
h2 − d̃

h2 +
ã
2h

.

− d̃
h2 − ã

2h
2d̃
h2 − d̃

h2 +
ã
2h

− 2d̃
h2

2d̃
h2 +

2ã
h
− ã2

d̃


∈ Rp×p , h =

1

p+ 1
.

For the purpose of legibility, we rewrite M̃ as a sum of matrices:

M̃ =
d̃

h2



2 −2

−1 2 −1

.

−1 2 −1

−2 2


+

ã

2h



−4 0

−1 0 1

.

−1 0 1

0 4



+
ã2

d̃



−1

0

. . .

0

−1



15

2.1.1.3 Upwind-Biased Schemes. Besides the second-order central finite

difference scheme, we also applied so-called upwind-biased finite difference

schemes. These are used only to discretize the advection term.

Consider the one-dimensional PDE in Equation (4)

∂u(x, t)

∂t
= ãux(x, t) + d̃uxx(x, t) + f(u(x, t)) ,

x ∈ Ω = (xa, xb),

The advection term ãux(x, t) causes the solution to be transported through the

domain Ω. If ã < 0, the solution moves to the right, i. e., in positive x direction. The

upwind direction refers to where the “wind” (or, more generally, the current) that

transports the solution is coming from. Here, this would be to the left, i. e., negative x

direction. If ã > 0, the solution moves to the left, and upwind is to the right.

In these cases, as described by Versteeg and Malalasekera (2007), the

concentration of a species at a certain point is more strongly influenced by the

concentrations that are upwind (upstream) of that point. Intuitively, this can be

understood by considering that “material” is transported from upwind to downwind,

and whatever is downwind of a point moves away from that point. In a pure advection

problem, the concentrations downwind of a point have no influence on that point at all.

In order to reflect that in a finite difference scheme, it should not be

symmetrical like the central difference scheme. Instead, the stencil is extended in the

upwind direction, and higher weights are given to values upwind. This reduces the

influence that downwind points have in the numerical scheme, thereby modeling the

physical reality.

16

We considered two different upwind-type schemes, specifically, upwind-biased

schemes. These are the second-order accurate Fromm scheme and a third-order

upwind-biased scheme. Both are described in Hundsdorfer and Verwer (2003).

Fromm Scheme. The Fromm scheme was originally described by Fromm

(1968). If ã < 0, it discretizes ux in the following way:

ux(xi) ≈
1

4
Ui−2 −

5

4
Ui−1 +

3

4
Ui +

1

4
Ui+1

If ã > 0, the scheme needs to be reflected around xi:

ux(xi) ≈ −1

4
Ui−1 −

3

4
Ui +

5

4
Ui+1 −

1

4
Ui+2

In both cases, the coefficients are greater in magnitude in the upwind direction. Also,

the stencils extend further in the upwind direction than in the downwind direction.

This is important to note since the Fromm scheme uses a larger stencil than the

second-order central differencing scheme. Expressing this scheme in matrix form,

therefore, produces a matrix with more bands. As we will see, this reduces

performance in solving systems with the corresponding matrix.

Third-Order Upwind-Biased Scheme. However, on the same stencil, a

third-order upwind-biased scheme can be constructed. Therefore, we consider this

as well. It approximates ux as

ux(xi) ≈
1

6
Ui−2 − Ui−1 +

1

2
Ui +

1

3
Ui+1

if ã < 0 and

ux(xi) ≈ −1

3
Ui−1 −

1

2
Ui + Ui+1 −

1

6
Ui+2

if ã > 0.

17

Matrix Form. Both of these schemes can be expressed in matrix form

analogous to Section 2.1.1.1. Boundary conditions are applied in similar ways as in

Section 2.1.1.2. Due to the larger stencils, further complications arise for some

boundary conditions. Therefore, we consider the upwind-biased schemes only for

periodic boundary conditions where a derivation analogous to that in Section 2.1.1.2

is immediately possible.

2.1.1.4 Generalization to Arbitrary Dimensions and Species. To compute

the discretization matrix M for the case with d dimensions and s species,

Asante-Asamani et al. (2020) employ a Kronecker-product formalism that we shall

use here as well. In order to derive this, we construct the formalism in steps.

One Dimension, Two Species. First consider a one-dimensional problem with

two species.

∂ui(x, t)

∂t
= ãi

∂

∂x
ui(x, t) + d̃i

∂2

∂x2
ui(x, t) + fi(u(x, t)) , i = 1, 2

x ∈ Ω = (xa, xb)

Discretizing this at the grid points x1, . . . , xp, we obtain U = (U>
1 , . . . ,U

>
p) where

Uj = (Uj1, Uj2)
> ∀j = 1, . . . , p.

Let U(i) = (U1i, . . . , Upi), i = 1, 2. Note that our problem contains two equations that

are only coupled by the nonlinear reaction term f . We discretize both equations

separately to obtain matrices M(1) and M(2), and the following systems of ODEs:

∂U(i)

∂t
+M(i)U(i) = f (i)(U) , U(i)(0) = U

(i)
0 , i = 1, 2

18

In order to combine this into a single system of ODEs, we observe that for any

vector V = (V11, V12, . . . , Vp1, Vp2), i.e., with the same structure as U,

M(i)U(i) = V(i), i = 1, 2

if and only if M(1)⊗

 1 0

0 0

+M(2)⊗

 0 0

0 1


U = V

where ⊗ denotes the Kronecker product (see Van Loan (2000) for details).

This gives us the full system of ODEs

∂U

∂t
+MU = f(U) , U(0) = U0

with the matrix

M = M(1)⊗

 1 0

0 0

+M(2)⊗

 0 0

0 1


One Dimension, Multiple Species. This can be generalized for arbitrary s as

follows:

M =
s∑

i=1

M(i) ⊗E(i) (10)

where

E(i) = diag(0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s−i times

) =



0

. . .

1

. . .

0


∈ Rs×s

where the 1 is the i-th diagonal entry of E(i). In this case,

U = (U>
1 , . . . ,U

>
p)

19

where

Uj = (Uj1, . . . , Ujs)
> ∀j = 1, . . . , p.

Two Dimensions, One Species. In order to discretize problems in an arbitrary

number of spatial dimensions, we first consider a problem in two dimensions with a

single species:

∂u(x, y, t)

∂t
= ã · ∇u(x, y, t) +∇ · D̃∇u(x, y, t) + f(u(x, y, t))

(x, y) ∈ Ω = (xa, xb)× (ya, yb),

(11)

where ã = (a1, a2) and

D̃ =

 d1 0

0 d2

 .

We can rewrite (11) to

∂u(x, y, t)

∂t
= a1ux(x, y, t) + a2uy(x, y, t) + d1uxx(x, y, t) + d2uyy(x, y, t) + f(u(x, y, t))

In order to discretize Ω, we start by first discretizing (xa, xb) to x1, . . . , xp and

(ya, yb) to y1, . . . , yp. Our discretization grid is then (xi, yj), i, j = 1, . . . , p:

(x1, y1) (xp, y1)

(x1, yp) (xp, yp)

20

We approximate u(xi, yj) by Uij in our discretization of u. By ordering the

points Uij in row-major order, i.e, we obtain the vector

U = (U11, . . . , Up1, , U1p, . . . , Upp).

Uij

Ui,j−1

Ui+1,j

Ui,j+1

Ui−1,j

Figure 1. 5-point stencil about Uij

Recall the discretization of uxx and ux in Equations (5) and (6), respectively. In

the 2-dimensional case, we obtain similar discretizations

uxx(xi, yj) ≈
Ui+1,j − 2Uij + Ui−1,j

h2

ux(xi, yj) ≈
Ui+1,j − Ui−1,j

2h

and analogously

uyy(xi, yj) ≈
Ui,j+1 − 2Uij + Ui,j−1

h2

uy(xi, yj) ≈
Ui,j+1 − Ui,j−1

2h
.

in the interior of Ω. Clearly, we can perform this discretization separately on each row

(and column, respectively). This is effectively a reduction to the 1-dimensional case.

Also considering the boundary conditions, we obtain a discretization matrix M̃1 per

row, i.e.,

−d1(Ui·)xx − a1(Ui·)x ≈ M̃1Ui·, i = 1, . . . , p

21

where M̃1 is constructed according to the boundary condition as in Section 2.1.1.

Combining these discretizations across all rows, we obtain

−d1Uxx − a1Ux = −d1


(U1·)xx

...

(Up·)xx

− a1


(U1·)x

...

(Up·)x

 =


M̃1

. . .

M̃1




U1·

...

Up·


Note that we can express the block matrix on the right hand side as a Kronecker

product 
M̃1

. . .

M̃1

 = Ip⊗ M̃1 ∈ Rp2×p2

where Ip ∈ Rp×p is an identity matrix.

Similarly, considering the columns, it is true that

−d2(U·j)yy − a2(U·j)y ≈ M̃2U·j, j = 1, . . . , p

where M̃2 is constructed according to the boundary condition as in Section 2.1.1.

Due to the ordering of points in our vector U, however, Uij and Uij+1 are

exactly p places apart. Hence, to obtain −d2Uyy − a2Uy, we need to correctly space

the entries of M̃2. We can again achieve this using a Kronecker product:

22

−d2Uyy − a2Uy =



m11 . . . m12

...
∗ ∗ ∗ ...

∗ ∗ ∗

m21 . . . m22 . . . m23

∗ ∗ ∗ ...
∗ ∗ ∗ ...

∗ ∗ ∗

mp−1,p−2 . . . mp−1,p−1 . . . mp−1,p

∗ ∗ ∗ ...
∗ ∗ ∗ ...

mp,p−1 . . . mpp


=(M̃2⊗ Ip)U.

Here,
... and · · · each represent a spacing of p− 1 entries of 0.

∗ ∗ ∗ represent

non-zero entries. Note that (M̃2⊗ Ip) ∈ Rp2×p2 as well.

So far, we have discretized the derivatives along each spatial axis separately.

Note that in equation (12) we add all the derivatives. Hence, we obtain the full

discretization matrix

M = Ip⊗ M̃1 + M̃2⊗ Ip.

Multiple Dimensions, One Species. This process can be generalized for higher

dimensions as well, yielding for three dimensions

M = Ip⊗ Ip ⊗ M̃1 + Ip⊗ M̃2⊗ Ip + M̃3⊗ Ip ⊗ Ip.

For d dimensions, we obtain

Mk = (
d−k
⊗
j=1

Ip)⊗ M̃k ⊗ (
k−1
⊗
j=1

Ip) ∈ Rpd×pd (12)

23

and

M =
d∑

k=1

Mk. (13)

Multiple Dimensions, Multiple Species. Finally, we can consider a problem with

s species in d dimensions. Above, we discretized the problem separately for each

species and combined the resulting matrices. I. e., we solve s problems in d

dimensions and obtain sd matrices M
(i)
k , k = 1, . . . , d, i = 1, . . . , s as in Equation (12).

Applying Equation (13), we obtain s matrices M(i) =
∑d

k=1M
(i)
k . Now we can combine

these using Equation (10):

M =
s∑

i=1

M(i) ⊗E(i)

=
s∑

i=1

(
d∑

k=1

M
(i)
k

)
⊗E(i)

Due to the linearity of the Kronecker product, we can rewrite this as

M =
d∑

k=1

(
s∑

i=1

M
(i)
k ⊗E(i)

)
=

d∑
k=1

Mk

where we define Mk =
∑s

i=1M
(i)
k ⊗E(i). We will use this final representation in the

derivation of the scheme below.

2.1.2 Properties of the Matrix Exponential

We define the matrix exponential for an arbitrary square matrix A ∈ Cn×n as

eA =
∞∑
i=0

Ai

i!
,

in analogy to the scalar exponential function.

24

The matrix exponential is used at the core of the derivation of the ETD-RDP-IF

scheme we are considering in this work. We will be using some properties of the

matrix exponential that we shall give here as lemmata. Suppose that A,B ∈ Cn×n.

Lemma 1. If AB = BA, i. e., A and B commute, then

AeB = eBA,

i. e., A and eB commute.

Proof.

AeB = A
∞∑
i=0

Bi

i!
=

∞∑
i=0

A
Bi

i!
=

∞∑
i=0

Bi

i!
A =

(
∞∑
i=0

Bi

i!

)
A = eBA

The proof is analogous to Higham (2008, Thm. 10.2).

Lemma 2. , If AB = BA, i. e., A and B commute, then

eAeB = eA+B = eBeA.

Proof. See Higham (2008, chap. 10).

Lemma 3. The exponential of a matrix is invertible and

(eB)−1 = e−B

Proof. See Higham (2008, chap. 10).

Lemma 4. The matrix exponential function f(t) = eAt is differentiable and

d

dt
eAt = AeAt = eAtA

Proof. See Higham (2008, chap. 10).

25

Lemma 5. Suppose A has the Jordan decomposition (Jordan normal form)

A = PJP−1. Then,

eA = PeJP−1.

Proof. See Horn and Johnson (1991, chap. 6).

2.2 ETD-RDP-IF

Asante-Asamani (2016) and Asante-Asamani et al. (2020) developed an

exponential time differencing (ETD) method using a rational (non-Padé)

approximation of the matrix exponential with real and simple distinct poles (RDP) and

an integrating factor (IF) dimensional splitting technique, called ETD-RDP-IF. Their

ETD-RDP-IF scheme was developed for diffusion-reaction systems. After a

description of the scheme, they suggested a possible way of implementing it, using

parallelization on three cores. The primary goal of this work is to extend their scheme

for the solution of advection-diffusion-reaction systems in order to be able to use the

same implementation techniques. In the following, we recount their derivation of the

scheme and adapt it to the more general context including advection that we are

considering here. Unless otherwise noted, this section is based on Asante-Asamani

et al. (2020).

2.2.1 Dimensional Splitting

After a finite difference discretization of the problem (1) with s species in d

dimensions, we obtain an ODE as in (3), i. e.,

26

∂U

∂t
+MU = f(U) , U(0) = U0 ∈ Rm

where m = s · pd, and M =
∑d

k=1Mk.

Each Mk represents the discretization considering one spatial dimension. The

initial value problem (3) can be simplified by considering these separately. This is

called dimensional splitting. Asante-Asamani et al. (2020) use an integrating factor

technique to achieve dimensional splitting and simplify the problem. In this section,

we describe their approach and prove that it is still applicable in the more general

context we are considering here in order to accommodate for advection.

For the purpose of demonstration, we will assume a 3-dimensional problem,

i.e., M can be represented as M = M1 +M2 +M3.

As suggested before, an integrating factor is used. In this case, it is eM1t. U is

multiplied with this function to obtain a new time-dependent vector-valued function

V = eM1tU. Note here that U is a function of t as well. We will later see how this

reduces the problem and thus simplifies it.

Taking the derivative of V with respect to time, we get

Vt = eM1tUt +M1e
M1tU

Using Equation (3), we can rewrite this to

Vt = eM1t(f(U)−MU) +M1e
M1tU

= eM1tf(U)− eM1tMU+M1e
M1tU

By Lemma 1,

eM1tMU = MeM1tU

27

provided that M1 and M commute. We will prove this below. So,

Vt = eM1tf(U)−MeM1tU+M1e
M1tU

= eM1tf(U)− (M−M1)e
M1tU

= eM1tf(U)− (M2 +M3)e
M1tU

where the last equality comes from M = M1 +M2 +M3.

Since V = eM1tU, and hence, by Lemma 3, U = e−M1tV,

Vt = eM1tf(e−M1tV)− (M2 +M3)V

= g(V)− (M2 +M3)V

where we define g(V) = eM1tf(e−M1tV).

This is a transformed differential equation. We adapt the initial conditions

V(0) = eM1·0U(0) = U(0) = U0. Hence, we obtain the initial value problem

Vt = g(V)− (M2 +M3)V, V(0) = U0

Analogously, we can define W = eM2tV. We obtain

Wt = eM2tVt +M2e
M2tV

= eM2t(g(V)− (M2 +M3)V) +M2e
M2tV

= eM2tg(V)− (M2 +M3)e
M2tV +M2e

M2tV

= eM2tg(V)−M3e
M2tV

= eM2tg(e−M2tW)−M3e
M2tV

28

= h(W)−M3W

with h(W) = eM2tg(e−M2tW).

By again transforming the initial conditions, we obtain the following IVP

Wt = h(W)−M3W, W(0) = U0

This system is what we will set out to solve. Once we have the solution W, it is easy

to compute

V = e−M2tW

U = e−M1tV

Notice that we can express h(W) as

h(W) = eM2tg(e−M2tW) = eM2teM1tf(e−M1te−M2tW)

Considering this, we can generalize the splitting technique we derived above to d

dimensions:

Zt = h(Z)−MdZ, Z(0) = U0 (14)

where

h(Z) = e
∑d−1

k=1 Mktf(e−
∑d−1

k=1 Mkt).

Note that, by Lemma 2,

e
∑d−1

k=1 Mk =
d−1∏
k=1

eMk ,

provided Mk, k = 1, . . . , d− 1 commute pairwise.

Having solved Equation (14), we can compute

U = e−
∑d−1

k=1 MktZ.

29

Therefore, the scheme we construct below will be applied to Equation (14) and then

solved for U.

In order to justify this construction, what is left to prove is that M and Mk

commute for all k = 1, . . . , d and that Mk, k = 1, . . . , d− 1 commute pairwise.

Asante-Asamani et al. (2020) proved similar statements. However, we are

considering more general matrices here and therefore repeat the proof in this more

general version, adapted to the precise formalism we described in Section 2.1.1.4.

Since M =
∑d

k=1Mk, it suffices to show the following

Lemma 6. Mk, k = 1, . . . , d are pairwise commutative, i. e.,

Mk ·M` = M` ·Mk ∀k, ` = 1, . . . , d .

Proof. Let k, ` be fixed. Recall that Mk =
∑s

i=1 M
(i)
k ⊗E(i) and M` =

∑s
j=1M

(j)
` ⊗E(j)

in the notation of Section 2.1.1.4. Assuming that M(i)
k and M

(j)
` commute for all

i, j = 1, . . . , s, we show the statement using the mixed product property of the

Kronecker product and matrix multiplication (Van Loan 2000).

Mk ·M` =
s∑

i=1

M
(i)
k ⊗ E(i) ·

s∑
j=1

M
(j)
` ⊗ E(j)

=
s∑

i,j=1

(M
(i)
k ⊗ E(i)) · (M(j)

` ⊗ E(j))

=
s∑

i,j=1

(M
(i)
k ·M(j)

`)⊗ (E(i) · E(j))

=
s∑

i,j=1

(M
(j)
` ·M(i)

k)⊗ (E(j) · E(i))

= M` ·Mk

as E(i) · E(j) = δijE
(i) = δijE

(j), where δij denotes the Kronecker delta.

30

What is left to prove is that M(i)
k and M

(j)
` commute (see also Asante-Asamani

et al. (2020)). Suppose, without loss of generality, k < ` and let i, j be fixed.

M
(i)
k ·M(j)

` =

((
d−k
⊗

m=1
Ip

)
⊗ M̃

(i)
k ⊗

(
k−1
⊗

m=1
Ip

))
·
((

d−`
⊗

m=1
Ip

)
⊗ M̃

(j)
` ⊗

(
`−1
⊗

m=1
Ip

))
=

(
d−`
⊗

m=1
Ip

)
⊗ M̃

(j)
` ⊗

(
`−k−1
⊗

m=1
Ip

)
⊗ M̃

(i)
k ⊗

(
k−1
⊗

m=1
Ip

)

Analogously,

M
(j)
` ·M(i)

k =

((
d−`
⊗

m=1
Ip

)
⊗ M̃

(j)
` ⊗

(
`−1
⊗

m=1
Ip

))
·
((

d−k
⊗

m=1
Ip

)
⊗ M̃

(i)
k ⊗

(
k−1
⊗

m=1
Ip

))
=

(
d−`
⊗

m=1
Ip

)
⊗ M̃

(j)
` ⊗

(
`−k−1
⊗

m=1
Ip

)
⊗ M̃

(i)
k ⊗

(
k−1
⊗

m=1
Ip

)

Therefore, we conclude

M
(i)
k ·M(j)

` = M
(j)
` ·M(i)

k .

Thus, the required commutativity is given, even in the presence of advection,

and the above construction is justified.

2.2.2 Discretization in Time

In the previous sections, we have obtained a (spatial) semi-discretization of

our initial problem and reduced it via dimensional splitting to (14). The next step is to

discretize the equation in time.

31

For the purpose of constructing the scheme, we consider an ODE of the form

(14) where we assume h to be sufficiently smooth.

Duhamel’s Principle. From Duhamel’s principle (Weissler 1979; Zheng 2004),

we know that a solution Z of (14) satisfies the following equation:

Z(t) = e−MdtZ(0) +

∫ t

0

e−Md(t−s)h(Z(s)) ds (15)

Based on this, we can derive an exact recurrence relation that is also satisfied

by the exact solution Z:

Z(tn+1) = e−Mdtn+1Z(0) +

∫ tn+1

0

e−Md(tn+1−s)h(Z(s)) ds

= e−MdkZ(0)e−MdtnZ(0)

+

∫ tn

0

e−Md(tn+k−s)h(Z(s)) ds+

∫ tn+1

tn

e−Md(tn+k−s)h(Z(s)) ds

= e−MdkZ(tn) +

∫ tn+1

tn

e−Md(tn+1−s)h(Z(s)) ds

where k is the time step and tn = nk ∀n.

All ETD schemes are based on this recurrence relation. The difficulty arises

here in evaluating the integral and approximating the matrix exponential (Cox and

Matthews 2002; Asante-Asamani 2016). We describe techniques for both below,

again following Asante-Asamani et al. (2020).

Before we continue, we perform a change of variables τ = (s− tn)/k to

simplify the recurrence relation.

Z(tn+1) = e−MdkZ(tn) + k

∫ 1

0

e−kMd(1−τ)h(Z(tn + kτ)) dτ (16)

Approximation of the Integral. Note that the recurrence relation contains an

integration of h(Z(t)) over the interval [tn; tn+1], and hence requires knowledge of

32

Z(t) on the whole interval. Since this is not given, we interpolate h by a linear

function between Z(tn+1) and Z(tn):

h(Z(tn + kτ)) ≈ h(Z(tn)) + (h(Z(tn + k))− h(Z(tn)))τ

This yields the following approximation for the integral:

Z(tn+1) ≈ e−MdkZ(tn)

+ k

∫ 1

0

e−kMd(1−τ) [h(Z(tn)) + (h(Z(tn + k))− h(Z(tn)))τ] dτ

= e−MdkZ(tn) + k

∫ 1

0

e−kMd(1−τ) dτ · h(Z(tn))

+ k

∫ 1

0

e−kMd(1−τ)τ dτ · (h(Z(tn+1))− h(Z(tn)))

(17)

This approximation has a truncation error of order 3, i. e., the truncation error is

O(k3).

Notice now that we can formally evaluate the above integrals exactly. However,

the resulting equations are fully implicit since they depend on h(Z(tn+1)). To make

them explicit, we also obtain a locally second-order (i. e., the local truncation error is

O(k2)) approximation (cf. also Cox and Matthews 2002, Asante-Asamani 2016) by

approximating h with a constant h(Z(tn)):

Z̃(tn+1) = e−MdkZ(tn) + k

∫ 1

0

e−kMd(1−τ)h(Z(tn)) dτ (18)

We use this to approximate h(Z(tn+1)) in the above equation (17) and obtain

Z(tn+1) ≈ e−MdkZ(tn) + k

∫ 1

0

e−kMd(1−τ) dτ · h(Z(tn))

+ k

∫ 1

0

e−kMd(1−τ)τ dτ · (h(Z̃(tn+1))− h(Z(tn)))

(19)

Note that Z̃(tn+1) in Equation (18) can be interpreted as a predictor step, so we end

up with a predictor-corrector type scheme. Cox and Matthews (2002) derive the

33

same scheme (18) and (19) by extending Runge-Kutta methods to ETD. They

therefore call this scheme ETD2RK. They show that in the case of a scalar ODE

(imagine Md and Z are scalars), this is an approximation of locally third order in k

(i. e., the local truncation error is O(k3)). It is worth noting here that, according to their

analysis, the error constant depends only on h. This suggests that it is likely

independent of Md in our case as well. However, we are not aware of a proof for this.

Evaluation of the Remaining Integrals. The further derivation of the scheme in

Asante-Asamani et al. (2020) is based on the assumption that Md is a non-singular

matrix. However, in many practical cases, this is not given. For example, in this work,

we consider periodic boundary conditions. To show that the linear operator

(consisting of advection and diffusion with boundary conditions) is not invertible,

consider the steady-state system

0 = ai · ∇ui +∇ ·Di∇ui , i = 1, . . . , s

with periodic boundary conditions. Note that we set f identically 0.

Suppose u is a solution of the steady-state system and consider v = u+ c

where c is a constant vector in Rs. Now let 1 ≤ i ≤ s be given. Then,

ai · ∇vi +∇ ·Di∇vi = ai · ∇(ui + ci) +∇ ·Di∇(ui + ci)

= ai · (∇ui +∇ci) +∇ ·Di(∇ui +∇ci)

= ai · ∇ui +∇ ·Di∇ui

= 0

Therefore, v is also a solution, and the operator is not invertible.

34

Therefore, we also do not expect the discretized operator, the discretization

matrix Md to be invertible. And indeed we observed for small discretization matrices

with periodic or vanishing normal derivative boundary conditions that these matrices

have some zero eigenvalues.

However, after a method-of-lines discretization of (1), the resulting IVP (3) —

with a regular or singular matrix — is uniquely solvable for reaction terms that fulfill

the conditions of the Picard-Lindelöf theorem (Hartman 2002). In the following, we

also perform the derivation assuming non-singular matrices to justify why the same

scheme works for singular matrices as well. Note that Shampine (1994) shows that

under the assumptions we pose, in particular, positive diffusion constants, the

eigenvalues of the discretization matrix have non-negative real parts for Dirichlet

boundary conditions and boundary conditions involving normal derivatives. It is,

therefore, a reasonable assumption that all eigenvalues of Md have non-negative real

parts.

We can now consider the integrals in (19) and note that these are integrals of

exponentials of linear functions that can be formally evaluated by standard

techniques. Asante-Asamani (2016) and Asante-Asamani et al. (2020) give the

following lemma:

Lemma 7. Let A ∈ Cn×n be a non-singular matrix. Then

k

∫ 1

0

e−kA(1−τ)dτ = A−1(I− e−kA)

k

∫ 1

0

e−kA(1−τ)τdτ = k−1A−2(kA− I+ e−kA)

Here, I ∈ Cn×n is the identity matrix.

35

Proof. See Asante-Asamani (2016) and Asante-Asamani et al. (2020).

However, the matrix exponential is well-defined for any matrix A ∈ Cn×n. By

Lemma 4, the given exponential functions in Lemma 7 are, in fact, differentiable, for

any A. Therefore, the integrals are well-defined for any matrix A. Hence, we know

that the integrals can be computed even for singular matrices.

We prove a generalization of Lemma 7.

Lemma 8. Let A ∈ Cn×n be a arbitrary square matrix. Then

kA

∫ 1

0

e−kA(1−τ)dτ = I− e−kA

kA2

∫ 1

0

e−kA(1−τ)τdτ = k−1(kA− I+ e−kA)

Proof. We prove this analogously to Asante-Asamani et al. (2020).

We know that

d

dτ
e−kA(1−τ) = kAe−kA(1−τ).

Therefore,

kA

∫ 1

0

e−kA(1−τ)dτ =

∫ 1

0

kAe−kA(1−τ)dτ =

∫ 1

0

d

dτ
e−kA(1−τ)dτ = I− e−kA

In order to obtain the second equality, we first employ a change of variables

σ = (1− τ)k:

kA2

∫ 1

0

e−kA(1−τ)τdτ = −A2

∫ k

0

e−σA(1− k−1σ)dσ

= A2

∫ k

0

e−σAdσ − k−1A2

∫ k

0

e−σAσdσ

Note that

d

dσ
e−σA = −Ae−σA,

36

so we can evaluate the first integral on the right hand side to

A2

∫ k

0

e−σAdσ = −A

∫ k

0

d

dσ
e−σAdσ = −A(e−kA − I)

Also,

d

dσ
Ae−σAσ + e−σA = −A2e−σA,

so

−k−1A2

∫ k

0

e−σAσdσ = k−1

∫ k

0

d

dσ
Ae−σAσ + e−σAdσ = Ae−kA + k−1e−kA − k−1I

Adding these, we obtain

kA2

∫ 1

0

e−kA(1−τ)τdτ = −Ae−kA +A+Ae−kA + k−1e−kA − k−1I

= A+ k−1(e−kA − I)

= k−1(kA− I+ e−kA),

the desired result.

Note that we did not directly evaluate the integrals from Lemma 7. In fact, we

do not need this. The next step in the derivation of Asante-Asamani et al. (2020) is to

approximate the matrix exponentials, so only approximations are necessary. We first

consider the approximation of the matrix exponential before we show that the relevant

approximations of the original integrals hold also in the case of singular matrices.

After that, we summarize all in a proof of second-order accuracy for the resulting

scheme.

37

2.2.3 Approximating the Matrix Exponential

Asante-Asamani (2016) and Asante-Asamani et al. (2020) apply the following

RDP approximation of the matrix exponential to the results of Lemma 7.

RRDP (kA) =

(
I− 5k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

= e−kA +O(k3), (20)

They obtain

k

∫ 1

0

e−kA(1−τ)dτ

= A−1
(
I− e−kA

)
= A−1

(
I−RRDP (kA) +O(k3)

)
= A−1 (I−RRDP (kA)) +O(k3)

= A−1

(
I−

(
I− 5k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1
)

+O(k3)

= A−1

((
I+

k

3
A

)(
I+

k

4
A

)
−
(
I− 5k

12
A

))(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

= A−1

(
I+

7k

12
A+

k2

12
A2 −

(
I− 5k

12
A

))(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

= A−1

(
kA+

k2

12
A2

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

=

(
kI+

k2

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

= k

(
I+

k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

Analogously,

k

∫ 1

0

e−kA(1−τ)τdτ

= k−1A−2
(
kA− I+ e−kA

)
38

= k−1A−2
(
kA− I+RRDP (kA) +O(k3)

)
= k−1A−2 (kA− I+RRDP (kA)) +O(k2)

= k−1A−2

(
kA− I+

(
I− 5k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1
)

+O(k2)

= k−1A−2

(
kA

(
I+

k

3
A

)(
I+

k

4
A

)
−
(
I+

k

3
A

)(
I+

k

4
A

)
+

(
I− 5k

12
A

))
·
(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

= k−1A−2

(
kA

(
I+

k

3
A

)(
I+

k

4
A

)
−
(
I+

7k

12
A+

k2

12
A2

)
+

(
I− 5k

12
A

))
·
(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

= k−1A−2

(
kA

(
I+

k

3
A

)(
I+

k

4
A

)
− kA− k2

12
A2

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

= A−1

((
I+

k

3
A

)(
I+

k

4
A

)
− I− k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

= A−1

((
I+

7k

12
A+

k2

12
A2

)
− I− k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

= A−1

(
k

2
A+

k2

12
A2

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

=
k

2

(
I+

k

6
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

Since we wish to also allow for singular matrices A, we need to rely on

Lemma 8. The following Lemma 9 shows that the same results hold, i. e., that we

obtain the same orders of approximations with the formulas we just derived.

Lemma 9. Let A ∈ Rn×n be a matrix such that all eigenvalues of A have

non-negative real parts. Then, the RDP approximation is well-defined and

k

∫ 1

0

e−kA(1−τ)dτ = k

(
I+

k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

39

Proof. Note first that, by a standard result from linear algebra, each eigenvalue µ of

I+B is equal to λ+ 1 for some eigenvalue λ of B. Hence, the real parts of the

eigenvalues of

I+
k

12
A, I+

k

4
A, and I+

k

3
A

are greater than 1. Hence, the matrices are invertible and the approximation is

well-defined.

We know that A has a, possibly complex, Jordan normal form A = PJP−1,

where

J =



J1

J2

. . .

Jp


∈ Cn×n

with the Jordan blocks

Ji =



λi 1

λi
. . .

. . . 1

λi


∈ Cni×ni , i = 1, . . . , p

Depending on the algebraic and geometric multiplicities of the eigenvalues of A,

there may exist i 6= j such that λi = λj

We first consider the matrix J and prove that the approximation holds for all

Jordan blocks Ji. As J is a block-diagonal matrix, the exponential and the integral

can be applied blockwise (Horn and Johnson 1991, chap. 6). Therefore, proving the

40

approximation for all Jordan blocks Ji, we can conclude that it also holds for J as a

whole.

Knowing that for all non-zero eigenvalues λi, Ji is invertible, this follows

immediately from the previous derivation. What is left is to prove the approximation

for all Ji with λi = 0. In this case, Ji has the following structure:

Ji =



0 1

0
. . .

. . . 1

0


∈ Rni×ni

We can now apply the matrix exponential explicitly and get

e−kJi(1−τ) =



1 (−k(1−τ))1

1!
. . . (−k(1−τ))ni−1

(ni−1)!

1
.

. . . (−k(1−τ))1

1!

1


∈ Rni×ni .

Applying the integral elementwise yields for the left hand side

k

∫ 1

0

e−kJi(1−τ)dτ =



k1

1!
−k2

2!
. . . (−1)ni−1 kni

ni!

k1

1!

.

. . . −k2

2!

k1

1!


=



k −k2

2

k
. . .

. . . −k2

2

k


+O(k3).

Note that the above approximation is valid with the same error constant for arbitrary

dimension of this Ji, i. e., the error constant is independent of ni. This is due to the

41

fact that the row-sum norm of the matrix

k1

1!
−k2

2!
. . . (−1)ni−1 kni

ni!

k1

1!

.

. . . −k2

2!

k1

1!


−



k −k2

2

k
. . .

. . . −k2

2

k



=



0 0 k3

3!
. . . (−1)ni−1 kni

ni!

0 0
.

. . . k3

3!

. . . 0

0


is bounded above by the infinite sequence

∞∑
j=3

kj

(j)!
= k3

∞∑
j=0

kj

(j + 3)!
≤ k3

∞∑
j=0

kj

(j)!
= k3ek.

This depends only on k, not on the dimensions of the matrix. Furthermore, since we

care about the limit as k → 0, we may assume that k <= 1, and so ek < e.

As Ji is nilpotent with Jni
i = 0, we can compute the right hand side using the

following Neumann series approach for c ∈ {3, 4}:(
I+

k

c
Ji

)−1

=

(
I−

(
−k

c
Ji

))−1

=
∞∑
j=0

(
−k

c
Ji

)j

=

ni∑
j=0

(
−k

c
Ji

)j

=



1 (−k
c
)1 . . . (−k

c
)ni−1

1
.

. . . (−k
c
)1

1


(21)

42

Clearly, this can be approximated as

2∑
j=0

(
−k

c
Ji

)j

+O(k3)

The error constant is, again, independent of ni. This can be seen by the

following argument:

ni∑
j=0

(
−k

c
Ji

)j

−
2∑

j=0

(
−k

c
Ji

)j

=

ni∑
j=3

(
−k

c
Ji

)j

= k3

ni∑
j=0

(−1)j+1 kj

cj+3
Jj+3
i

Note that the row-sum norm of Jj
i is ||Jj

i ||∞= 1 if j ≤ ni, and ||Jj
i ||∞= 0 otherwise.

Hence, the row-sum norm of

k3

ni∑
j=0

(−1)j+1 kj

cj+3
Jj+3
i

is bounded above by the infinite sequence

k3

∞∑
j=3

kj

cj+3
≤ k3

∞∑
j=0

(
k

c

)j

= k3 c

c− k

assuming, like above, that k < 1. Assuming k < 0.5, we can furthermore bound c
c−k

by 2 given that c ∈ {3, 4}. These bounds are independent of ni, as desired.

From the Neumann series, we obtain

k

(
I+

k

12
Ji

)(
I+

k

4
Ji

)−1(
I+

k

3
Ji

)−1

= k



1 k
12

. . .

1
.

. . . k
12

1





1 (−k
4
)1 . . . (−k

4
)ni−1

1
.

. . . (−k
4
)1

1





1 (−k
3
)1 . . . (−k

3
)ni−1

1
.

. . . (−k
3
)1

1



43

which after multiplication and applying the binomial theorem and the above

approximations equals

k

(
I+

k

12
Ji

) ni∑
j=0

ni∑
`=0

(
−k

4
Ji

)j (
−k

3
Ji

)`

=k

(
I+

k

12
Ji

) ni∑
j=0

ni∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`
i

=

ni∑
j=0

ni∑
`=0

(−1)j+`kj+`+1

(
1

4

)j (
1

3

)`

Jj+`
i +

1

12

ni∑
j=0

ni∑
`=0

(−1)j+`kj+`+2

(
1

4

)j (
1

3

)`

Jj+`+1
i

=
1∑

j=0

1−j∑
`=0

(−1)j+`kj+`+1

(
1

4

)j (
1

3

)`

Jj+`
i

+
1

12

0∑
j=0

0∑
`=0

(−1)j+`kj+`+2

(
1

4

)j (
1

3

)`

Jj+`+1
i +O(k3)

=kI− k2

3
Ji −

k2

4
Ji +

k2

12
Ji +O(k3)

=



k

k

. . .

k


+



0 −k2

3

0
. . .

. . . −k2

3

0


+



0 −k2

4

0
. . .

. . . −k2

4

0



+



0 k2

12

0
. . .

. . . k2

12

0


+O(k3)

=



k −k2

2

k
. . .

. . . −k2

2

k


+O(k3)

44

We conclude from this representation that the approximation holds up to third

order for Ji where Ji is a Jordan block for the eigenvalue λi = 0. As stated above, this

approximation can be applied independently for each Jordan block as the full Jordan

matrix J is block diagonal and the block structure is identical for all involved matrices

J and I. We can, thus, conclude that the approximation holds for any Jordan matrix J.

From this, we can now derive that it holds for any matrix A by representing A

as A = PJP−1 where A,J,P are independent of k. Using Lemma 5, we obtain

k

∫ 1

0

e−kA(1−τ)dτ

=k

∫ 1

0

e−kPJP−1(1−τ)dτ

=k

∫ 1

0

Pe−kJ(1−τ)P−1dτ

=Pk

∫ 1

0

e−kJ(1−τ)dτP−1

=P

(
k

(
I+

k

12
J

)(
I+

k

4
J

)−1(
I+

k

3
J

)−1

+O(k3)

)
P−1

=kP

(
I+

k

12
J

)
P−1P

(
I+

k

4
J

)−1

P−1P

(
I+

k

3
J

)−1

P−1 +O(k3)

=k

(
PP−1 +

k

12
PJP−1

)(
PP−1 +

k

4
PJP−1

)−1(
PP−1 +

k

3
PJP−1

)−1

+O(k3)

=k

(
I+

k

12
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k3)

Note that the error constants still do not depend on the size of the matrix A,

thus are independent of n.

This concludes the proof.

In the same way, the above approximation for the second integral holds as well

with the same order.

45

Lemma 10. Let A ∈ Rn×n be a matrix such that all eigenvalues of A have

non-negative real parts. Then,

k

∫ 1

0

e−kA(1−τ)τdτ =
k

2

(
I+

k

6
A

)(
I+

k

4
A

)−1(
I+

k

3
A

)−1

+O(k2)

Proof. We perform this proof like the previous proof of Lemma 9 and consider the

Jordan normal form A = PJP−1, where

J =



J1

J2

. . .

Jp


∈ Cn×n

with the Jordan blocks

Ji =



λi 1

λi
. . .

. . . 1

λi


∈ Cni×ni , i = 1, . . . , p

We need only consider the Jordan block Ji for λi = 0. Explicitly computing the

integral with the matrix exponential

e−kJi(1−τ)τ =



τ (−k(1−τ))1τ
1!

. . . (−k(1−τ))ni−1τ
(ni−1)!

τ
.

. . . (−k(1−τ))1τ
1!

τ


∈ Rni×ni

46

gives

k

∫ 1

0

e−kJi(1−τ)τdτ =



k
2

−k2

3!
. . . (−1)ni−1kn

(ni+1)!

k
2

.

. . . −k2

3!

k
2



=



k
2

−k2

3!

k
2

. . .

. . . −k2

3!

k
2


+O(k3)

=



k
2

k
2

. . .

k
2


+O(k2)

For the right hand side, we can use the same Neumann series approach as in

(21) to obtain

(
I+

k

c
Ji

)−1

=

ni∑
j=0

(
−k

c
Ji

)j

=



1 (−k
c
)1 . . . (−k

c
)ni−1

1
.

. . . (−k
c
)1

1


Thus,

k

2

(
I+

k

6
Ji

)(
I+

k

4
Ji

)−1(
I+

k

3
Ji

)−1

=
k

2

(
I+

k

6
Ji

) ni∑
j=0

ni∑
`=0

(
−k

4
Ji

)j (
−k

3
Ji

)`

47

=
k

2

(
I+

k

6
Ji

) ni∑
j=0

ni∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`
i

=
k

2

ni∑
j=0

ni∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`
i +

k2

12

ni∑
j=0

ni∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`+1
i

=
k

2

1∑
j=0

1−j∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`
i

+
k2

12

0∑
j=0

0∑
`=0

(−1)j+`kj+`

(
1

4

)j (
1

3

)`

Jj+`+1
i +O(k3)

=
k

2
I− k2

6
Ji −

k2

8
Ji +

k2

12
Ji +O(k3)

=



k
2

k
2

. . .

k
2


+



0 −k2

6

0
. . .

. . . −k2

6

0


+



0 −k2

8

0
. . .

. . . −k2

8

0



+



0 k2

12

0
. . .

. . . k2

12

0


+O(k3)

=



k
2

−5k2

24

k
2

. . .

. . . −5k2

24

k
2


+O(k3) =



k
2

k
2

. . .

k
2


+O(k2)

Therefore, the desired approximation holds for Jordan block Ji corresponding

to the eigenvalue λi = 0 of A. As seen in the derivations for regular matrices above, it

48

also holds for all other possible Jordan blocks since they are by construction regular.

Just like in the proof of Lemma 9, we can conclude that it holds for J.

Since Bτ = τB, we do not show again that the approximation then holds for A

as well. Instead, we refer to the corresponding section of the proof for Lemma 9. Also

analogously to this proof, the error constants do not depend on the size of the matrix

A, thus are independent of n.

This concludes the proof.

Note that similar expansions as we did here can be performed for regular

matrices as well. These yield the same results. We do not perform these explicitly

since we have shown the abstract derivation above (before Lemma 9).

We can now apply the approximations to the scheme of Equation (19) and

obtain the following fully discrete scheme.

Zn+1 =

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

Zn

+ k

(
I+

k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Zn)

+
k

2

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

(h(Z̃n+1)− h(Zn))

(22)

This can be simplified to

Zn+1 =

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

Zn

+
k

2

(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Zn)

+
k

2

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Z̃n+1)

(23)

The predictor (Equation (18)) has a truncation error of O(k2), so we can apply

a second-order approximation of the exponential without loss of precision. We use

49

the [0/1] Padé approximation

R01(kA) = (I+ kA)−1 = e−kA +O(k2)

We then obtain in the case of a regular matrix A

k

∫ 1

0

e−kA(1−τ)dτ

= A−1
(
I− e−kA

)
= A−1

(
I−R01(kA) +O(k2)

)
= A−1 (I−R01(kA)) +O(k2)

= A−1
(
I− (I+ kA)−1

)
+O(k2)

= A−1
(
(I+ kA)(I+ kA)−1 − (I+ kA)−1

)
+O(k2)

= A−1
(
(I+ kA)−1 + kA(I+ kA)−1 − (I+ kA)−1

)
+O(k2)

= A−1
(
kA(I+ kA)−1

)
+O(k2)

= k(I+ kA)−1 +O(k2)

Lemma 11. Let A ∈ Rn×n be a matrix such that all eigenvalues of A have

non-negative real parts. Then,

k

∫ 1

0

e−kA(1−τ)dτ = k(I+ kA)−1 +O(k2)

Proof. We consider, again, the Jordan normal form A = PJP−1 with Jordan blocks

Ji. As previously, it is sufficient to consider the Jordan block Ji for the eigenvalue λi.

50

From the proof of Lemma 9, we know that for Ji, the following holds:

k

∫ 1

0

e−kJi(1−τ)dτ =



k −k2

2

k
. . .

. . . −k2

2

k


+O(k3).

and

k (I+ kJi)
−1 =



k (−k)2 . . . (−k)ni

k
.

. . . (−k)2

k


So, clearly,

k

∫ 1

0

e−kJi(1−τ)dτ = k (I+ kJi)
−1 +O(k2)

We refer back to the proof of Lemma 9 for the conclusion that

k

∫ 1

0

e−kA(1−τ)dτ = k (I+ kA)−1 +O(k2)

Note again that the error constants do not depend on the size of A, thus are

independent of n.

The predictor Z̃n+1 is, therefore, computed as

Z̃n+1 = (I+ kMd)
−1 Zn

+ k (I+ kMd)
−1 h(Zn)

= (I+ kMd)
−1 (Zn + kh(Zn))

(24)

51

2.2.4 Accuracy

Asante-Asamani (2016) proves that the scheme derived above is

second-order accurate and stable. He is able to show this in the setting of strongly

continuous semigroups, where Md and other matrices can be more general

operators. This allows him to consider the limit as h → 0 while we are only able to

consider fixed, finite h in order to obtain finite matrices. However, the proof requires

the operator to be invertible, just like the derivation in Asante-Asamani et al. (2020).

Our derivation so far does not require the matrices to be invertible and we

have found all relevant approximations to hold with the same order. To complete this,

we, therefore, prove second-order accuracy of the time-stepping scheme for finite,

but not necessarily invertible matrices, i. e., for a fixed, finite spatial grid. This serves

as a first step in a potential attempt for a full proof.

In the following, assume that Z(t) is the exact solution of the initial value

problem 14.

Lemma 12. The truncation error for the predictor Z̃n+1 is of second order in time,

i. e., Z̃n+1 − Z(tn+1) = O(k2).

Proof. Let, as in Equation (24),

Z̃n+1 = (I+ kMd)
−1 (Zn + kh(Zn))

We want to show that Z̃n+1 − Z(tn+1) = O(k2). Note that Z(t) satisfies Duhamel’s

principle, i. e., (15).

Z(t) = e−MdtZ(0) +

∫ t

0

e−Md(t−s)h(Z(s))ds .

52

From (18) and the approximations in Section 2.2.3, we know that

Z(tn+1) = e−MdkZ(tn) + k

∫ 1

0

e−kMd(1−τ)h(Z(tn)) dτ +O(k2)

= (I + kMd)
−1 Z(tn) +O(k2) + k (I + kMd)

−1 h(Z(tn)) +O(k2)

= (I+ kMd)
−1 (Zn + kh(Zn)) +O(k2)

= Z̃n+1 +O(k2)

This finishes the proof.

Theorem 1. Given the predictor of (24), the method in (23) is second-order accurate

in time, i. e., has a local truncation error of O(k3). In other words,

Zn+1 − Z(tn+1) = O(k3)

Proof. Let

Z̃n+1 = (I+ kMd)
−1 (Zn + kh(Z(tn)))

and

Zn+1 =

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

Z(tn)

+
k

2

(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Z(tn))

+
k

2

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Z̃n+1)

as in Equations (24) and (23)

We want to show that Zn+1 − Z(tn+1) = O(k3). Note that Z(t) satisfies

Duhamel’s principle, i. e., (15).

Z(t) = e−MdtZ(0) +

∫ t

0

e−Md(t−s)h(Z(s)) ds

53

By Equation (19) and the approximations from Section 2.2.3,

Z(tn+1) = e−MdkZ(tn) + kh(Z(tn))

∫ 1

0

e−kMd(1−τ) dτ

+ k(h(Z̃n+1)− h(Z(tn)))

∫ 1

0

e−kMd(1−τ)τ dτ +O(k3)

=

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

Z(tn) +O(k3)

+ k

(
I+

k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Z(tn)) +O(k3)

+

(
k

2

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

+O(k2)

)(
h(Z̃n+1)− h(Z(tn))

)
=

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

Z(tn)

+ k

(
I+

k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

h(Z(tn))

+
k

2

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1 (
h(Z̃n+1)− h(Z(tn))

)
+O(k3)

= Zn+1 +O(k3)

Note that the penultimate equality holds provided

h(Z̃n+1)− h(Z(tn)) = O(k)

This is a kind of Lipschitz condition on h that we assume to be true since we are

assuming h to be sufficiently smooth.

Using Theorem 1, we can continue following the derivation of the scheme from

Asante-Asamani et al. (2020) with the same order of accuracy.

2.2.5 Partial Fraction Decomposition

Like Asante-Asamani (2016) and Asante-Asamani et al. (2020), we can

simplify Equation (23) by a partial fraction decomposition. Considering the scalar

54

variable z, and the rational function

1− 5z
12

(1 + z
4
)(1 + z

3
)
,

we obtain the partial fraction decomposition

1− 5z
12

(1 + z
4
)(1 + z

3
)
=

9

1 + z
3

− 8

1 + z
4

.

Similarly,

1

(1 + z
4
)(1 + z

3
)
=

4

1 + z
3

− 3

1 + z
4

and

1 + z
6

(1 + z
4
)(1 + z

3
)
=

2

1 + z
3

− 1

1 + z
4

.

We can apply this analogously to the terms of the corrector. That this is

possible follows, e. g., from Horn and Johnson (1991, chap. 6), Corollary 6.2.10 (e).

(
I− 5k

12
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

= 9

(
I+

k

3
Md

)−1

− 8

(
I+

k

4
Md

)−1

(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

= 4

(
I+

k

3
Md

)−1

− 3

(
I+

k

4
Md

)−1

(
I+

k

6
Md

)(
I+

k

4
Md

)−1(
I+

k

3
Md

)−1

= 2

(
I+

k

3
Md

)−1

− 1

(
I+

k

4
Md

)−1

Applying this to Equation (23) yields

Zn+1 =

(
9

(
I+

k

3
Md

)−1

− 8

(
I+

k

4
Md

)−1
)
Zn

+
k

2

(
4

(
I+

k

3
Md

)−1

− 3

(
I+

k

4
Md

)−1
)
h(Zn)

+
k

2

(
2

(
I+

k

3
Md

)−1

− 1

(
I+

k

4
Md

)−1
)
h(Z̃n+1)

=

(
I+

k

3
Md

)−1 (
9Zn + 2kh(Zn) + kh(Z̃n+1)

)
55

−
(
I+

k

4
Md

)−1(
8Zn +

3k

2
h(Zn) +

k

2
h(Z̃n+1)

)
The full scheme is, therefore,

Zn+1 =

(
I+

k

3
Md

)−1 (
9Zn + 2kh(Zn) + kh(Z̃n+1)

)
−
(
I+

k

4
Md

)−1(
8Zn +

3k

2
h(Zn) +

k

2
h(Z̃n+1)

)
Z̃n+1 = (I+ kMd)

−1 (Zn + kh(Zn))

(25)

The advantage of this representation of the scheme is that it allows for

parallelization (Asante-Asamani 2016; Asante-Asamani et al. 2020). Specifically, the

systems (
I+

k

3
Md

)−1

and (
I+

k

4
Md

)−1

can be solved simultaneously instead of sequentially.

2.2.6 Unwinding the Dimensional Splitting

Notice now that

h(Zn) = e
∑d−1

i=1 Mitnf(e−
∑d−1

i=1 MitnZn)

depends on matrix exponentials as well. These were introduced by the dimensional

splitting. We, therefore, unwind the dimensional splitting by reducing the scheme

back to U and f , the functions involved in the problem before the splitting.

Recall that, by construction,

Z(tn) = e
∑d−1

i=1 MitnU(tn).

56

So we set

Zn = e
∑d−1

i=1 MitnUn

and, analogously,

Zn+1 = e
∑d−1

i=1 Mitn+1Un+1

and

Z̃n+1 = e
∑d−1

i=1 Mitn+1Ũn+1

Therefore,

h(Zn) = e
∑d−1

i=1 Mitnf(Un).

Inserting this into our full scheme (25) yields

e
∑d−1

i=1 Mitn+1Un+1 =

(
I+

k

3
Md

)−1

e
∑d−1

i=1 Mitn
(
9Un + 2kf(Un) + kf(Ũn+1)

)
−
(
I+

k

4
Md

)−1

e
∑d−1

i=1 Mitn

(
8Un +

3k

2
f(Un) +

k

2
f(Ũn+1)

)
e
∑d−1

i=1 Mitn+1Ũn+1 = (I+ kMd)
−1 e

∑d−1
i=1 Mitn(Un + kf(Un))

We can rewrite

e
∑d−1

i=1 Mitn = e
∑d−1

i=1 Mink.

Thus, by Lemma 2,

e
∑d−1

i=1 Mitn+1 = e
∑d−1

i=1 Mi(nk+k) = e
∑d−1

i=1 Mink · e
∑d−1

i=1 Mik.

Then, we multiply

e−
∑d−1

i=1 Mi(nk+k)

57

on both sides to obtain, by Lemmas 3 and 1,

Un+1 =

(
I+

k

3
Md

)−1

e−
∑d−1

i=1 Mik
(
9Un + 2kf(Un) + kf(Ũn+1)

)
−
(
I+

k

4
Md

)−1

e−
∑d−1

i=1 Mik

(
8Un +

3k

2
f(Un) +

k

2
f(Ũn+1)

)
Ũn+1 = (I+ kMd)

−1 e−
∑d−1

i=1 Mik(Un + kf(Un))

Note that we also used the fact that if A,B ∈ Rn×n and A and B commute, then also

A−1 and B commute.

The final step is now to approximate the matrix exponential again and simplify.

In the predictor, we use the R01 approximation and in the corrector, we use RRDP .

This yields, due to the commutativity of the Mi, i = 1, . . . , d,

Un+1 =

(
I+

k

3
Md

)−1

e−M1k · . . . · e−Md−1k
(
9Un + 2kf(Un) + kf(Ũn+1)

)
−
(
I+

k

4
Md

)−1

e−M1k · . . . · e−Md−1k

(
8Un +

3k

2
f(Un) +

k

2
f(Ũn+1)

)
=

(
I+

k

3
Md

)−1
(
9

(
I+

k

3
M1

)−1

− 8

(
I+

k

4
M1

)−1
)

· . . .

·

(
9

(
I+

k

3
Md−1

)−1

− 8

(
I+

k

4
Md−1

)−1
)(

9Un + 2kf(Un) + kf(Ũn+1)
)

−
(
I+

k

4
Md

)−1
(
9

(
I+

k

3
M1

)−1

− 8

(
I+

k

4
M1

)−1
)

· . . .

·

(
9

(
I+

k

3
Md−1

)−1

− 8

(
I+

k

4
Md−1

)−1
)(

8Un +
3k

2
f(Un) +

k

2
f(Ũn+1)

)
and

Ũn+1 = (I+ kMd)
−1 e−M1k · . . . · e−Md−1k(Un + kf(Un))

= (I+ kMd)
−1 (I+ kM1)

−1 · . . . · (I+ kMd−1)
−1 (Un + kf(Un))

= (I+ kMd)
−1 · . . . · (I+ kM1)

−1 (Un + kf(Un))

This concludes the derivation of the final scheme.

58

2.2.7 Accuracy of the Final Scheme

What is left now is to prove accuracy for the final scheme.

Lemma 13. The truncation error for Ũn+1 is of second order, i. e.,

Ũn+1 −U(tn+1) = O(k2).

Proof. By Lemma 12, the truncation error of Z̃n+1 is of second order.

We assume that U(t) and Z(t) are the exact solutions of the respective

problems. Since all transformations are exact, and

e−
∑d−1

i=1 Mi(nk+k)

is bounded in k (recall that the eigenvalues of Mi are non-negative for all i = 1, . . . , d),

we know immediately that

Ũn+1 = (I+ kMd)
−1 e−

∑d−1
i=1 Mik(Un + kf(Un)) +O(k2)

Knowing that

e−Mik = (I+ kMi)
−1 +O(k2) ∀i = 1, . . . , d,

we obtain inductively

e−Md−1k · e−Md−2k · . . . · e−M1k

=
(
(I+ kMd−1)

−1 +O(k2)
) (

(I+ kMd−2)
−1 +O(k2)

)
· e−Md−3k · . . . · e−M1k

=
(
(I+ kMd−1)

−1 (I+ kMd−2)
−1 +O(k2)

)
· e−Md−3k · . . . · e−M1k

= (I+ kMd−1)
−1 (I+ kMd−2)

−1 · e−Md−3k · . . . · e−M1k +O(k2)

= . . .

59

= (I+ kMd−1)
−1 · . . . · (I+ kM1)

−1 +O(k2)

So, finally,

Ũn+1 = (I+ kMd)
−1 e−

∑d−1
i=1 Mik(Un + kf(Un)) +O(k2)

= (I+ kMd)
−1 ((I+ kMd−1)

−1 · . . . · (I+ kM1)
−1 +O(k2)

)
(Un + kf(Un)) +O(k2)

= (I+ kMd)
−1 · . . . · (I+ kM1)

−1 (Un + kf(Un)) +O(k2)

Finally, we can prove the following theorem:

Theorem 2. The full scheme is second-order accurate in time, i. e., if U(t) is the

exact solution of (3), then

Un+1 −U(tn+1) = O(k3)

Proof. Since all transformations are exact, and

e−
∑d−1

i=1 Mi(nk+k)

is bounded in k, we know immediately that

Un+1 =

(
I+

k

3
Md

)−1

e−M1k · . . . · e−Md−1k
(
9U(tn) + 2kf(U(tn)) + kf(Ũn+1)

)
−
(
I+

k

4
Md

)−1

e−M1k · . . . · e−Md−1k

(
8U(tn) +

3k

2
f(U(tn)) +

k

2
f(Ũn+1)

)
+O(k3)

Since

e−Mik =

(
9

(
I+

k

3
Mi

)−1

− 8

(
I+

k

4
Mi

)−1
)

+O(k3) ∀i = 1, . . . , d,

60

we can conclude analogously to the proof of Lemma 13 that

U(tn+1) =

(
I+

k

3
Md

)−1
(
9

(
I+

k

3
M1

)−1

− 8

(
I+

k

4
M1

)−1
)

· . . .

·

(
9

(
I+

k

3
Md−1

)−1

− 8

(
I+

k

4
Md−1

)−1
)(

9U(tn) + 2kf(U(tn)) + kf(Ũn+1)
)

−
(
I+

k

4
Md

)−1
(
9

(
I+

k

3
M1

)−1

− 8

(
I+

k

4
M1

)−1
)

· . . .

·

(
9

(
I+

k

3
Md−1

)−1

− 8

(
I+

k

4
Md−1

)−1
)(

8U(tn) +
3k

2
f(U(tn)) +

k

2
f(Ũn+1)

)

+O(k3)

The last theorem shows that the method is consistent and second-order

accurate in time for a fixed spatial grid.

2.2.8 Numerical Implementation

For details on the implementation, we refer to Asante-Asamani et al. (2020).

They first describe the parallelizations that are possible by introducing the partial

fraction decomposition, giving detailed flow charts for parallelized implementations in

the two- and three-dimensional cases. Besides that, they describe optimizations that

use the specific band structure of the finite difference matrices. Namely, the matrices

Mi, i = 1, . . . , d only have three non-zero bands, one of which is the main diagonal.

This suggests that variants of the Thomas algorithm can be used. Since the two

outer bands are not necessarily adjacent to the main diagonal, it needs to be

adapted. As Asante-Asamani et al. (2020) show, this is possible in the case of the

vanishing normal derivative and Dirichlet boundary conditions.

61

For periodic boundary conditions, the structure is different making this

approach impossible.

In this work, in order to allow for the most generality, we do not use any

optimizations and instead call a standard LU decomposition algorithm that is not

specifically optimized.

The source code can be found at github.com/muellerbjoern/ETDRDPIF.

2.3 Krylov-EETD

Another ETD scheme is introduced in Bhatt et al. (2018). It uses an

extrapolation technique based on a first-order ETD scheme. Then, the arising matrix

exponentials are approximated using a Krylov-subspace technique. We performed a

comparison of the ETD-RDP-IF scheme to this Krylov-EETD scheme below.

Therefore, we describe the derivation of this scheme here. Note that we do not focus

on theoretical results such as error bounds or stability.

The starting point in Bhatt et al. (2018) is an ADR system like (1). Since

Krylov-EETD also uses a method-of-lines approach, the first step is to discretize the

problem to the form (3). This is done by a central finite difference scheme, analogous

to Section 2.1.1.

First-Order ETD Scheme. Applying Duhamel’s principle, they obtain a

recurrence relation analogous to (16)

U(tn+1) = e−MkU(tn) + k

∫ 1

0

e−kM(1−τ)f(U(tn + kτ)) dτ

A first-order approximation of the integral, assuming

62

github.com/muellerbjoern/ETDRDPIF

f(U(t)) = f(U(tn)) ∀t ∈ [tn; tn+1], gives

U(tn+1) ≈ e−MkU(tn) + k

∫ 1

0

e−kM(1−τ)f(U(tn)) dτ

Then, Bhatt et al. (2018) evaluate the integral, assuming that M is invertible,

i. e., as in Lemma 7. Denoting the approximation of U(tn) by Un, they obtain the

first-order scheme

Un+1 = e−kMUn +M−1
(
I− e−kM

)
f(Un)

This is a first-order accurate ETD scheme.

Since the scheme is first-order accurate, the local truncation error is O(k2).

Hence, introducing another error of O(k2) does not change the asymptotics.

Therefore, Bhatt et al. (2018) rewrite the scheme as

Un+1 = e−kM (Un + kf(Un)) +O(k2)

Extrapolation. In order to obtain a second-order scheme, the authors perform

an extrapolation. Taking a single time step of 2k, an approximation U
(2)
n+2 is obtained

as

U
(2)
n+2 = e−2kM (Un + 2kf(Un)) +O(k2).

Instead taking 2 steps of k, they obtain

U
(1)
n+2 = e−kM (Un+1 + kf(Un+1)) +O(k2),

where Un+1 is computed as in the original scheme.

Having performed a Taylor expansion of both schemes up to k2, Bhatt et al.

(2018) report that the extrapolation

Un+2 = 2U
(1))
n+2 −U

(2))
n+2

63

yields a second-order accurate scheme which they call EETD (short for extrapolated

ETD).

Krylov-Subspace Approximation. Computing the matrix exponentials in the

above scheme is a challenge. The matrix M is large and sparse. However, the

exponential will generally be a dense matrix. Is is, therefore, desirable to not compute

the full matrix exponential (Moler and Van Loan 2003). We can see from the scheme

above that we only need to compute the action of the matrix exponential on some

vectors.

Suppose, now, we intend to compute e−kAv for some square matrix A and

vector v. We follow the description of the Krylov subspace approximation given in

Bhatt et al. (2018). A Krylov-subspace approximation considers the M-dimensional

subspace

K = span({v,Av,A2v, . . . ,AM−1v})

The so-called Arnoldi algorithm (Saad 2011, chap. 6) computes an

orthonormal basis of this subspace, say {v1, . . . ,vM}, and a projection matrix H of A

onto K. H is an M ×M Hessenberg matrix.

Then, e−kAv can be approximated by

e−kAv ≈ γVe−kHe1

where γ = ||v||2 and V = (v1, . . . ,vM). e1 is the first canonical unit vector in CM .

Due to the low dimensionality, the computation of e−kH can be done using

standard methods for dense matrices. Bhatt et al. (2018) suggest a scaling-and-

squaring approach which is also used by the expm function in Matlab and

64

scipy.linalg.expm for Python. For details on this, see Moler and Van Loan (2003),

Higham (2005), and Al-Mohy and Higham (2010). For the numerical experiments in

Chapter 3, we chose a Krylov-subspace dimension of M = 10.

Expokit Implementation. The function expv in the Matlab package Expokit

(Sidje 1998) provides an implementation of a Krylov-subspace approximation of

e−kAv for arbitrary matrices A and vectors v, and small positive constants k. It uses

an adaptive version of the Arnoldi algorithm and the procedure described above.

We discuss shortly the adaptive code employed by Expokit. The adaptivity is

based on the fact that

e−At = e−At1 · e−A(t−t1) ∀0 ≤ t1 ≤ t.

This is the semi-group property of the exponential. Therefore, instead of computing

r = e−kAv directly, it is possible to compute w = e−t1Av and r = e−(k−t1)Aw. Clearly,

each of these steps can be broken down further.

Hence, the adaptive code in Expokit performs a time-stepping-type iteration to

compute the final result. The time step is determined based on local error criteria.

Algorithm 1 shows a pseudo-code representation of the adaptive code.

In our numerical experiments in Chapter 3, we compare ETD-RDP-IF to the

Krylov-EETD scheme. We consider two different implementations of the

Krylov-subspace approximation of the matrix exponential. One of these is the one

described above, as implemented in Expokit. Besides that, we consider what we call

a “non-adaptive” version. In this version, we removed the time-stepping from the

Expokit code. Hence, only a single step is performed, and no error checking is

65

t ime = 0

determine i n i t i a l t ime step t_s tep

whi le (t ime < k)

A rno ld i process to compute H and V

whi le (not r e j ec ted too o f ten)

/ / perform a step wi th t_s tep :

v = expm(−H* t_s tep) v

i f (e r r o r >= t o l)

r e j e c t the step

reduce t_s tep

t ime = t ime + t_s tep

adapt t_s tep

Algorithm 1. Pseudo-code representation of the Expokit implementation of expv

66

performed. This reduces the code to performing the Arnoldi process once and

computing the final result based on this.

As we will show, we considered this non-adaptive implementation since the

adaptivity caused excessively small time steps in the examples we tested, resulting in

computation times becoming infeasible. Note that the scaling-and-squaring that is

used internally to compute the exponential of H is still an adaptive algorithm.

However, this did not cause any problems.

67

3 Numerical Experiments

In order to investigate the performance of the ETD-RDP-IF method for solving

ADR problems, we performed some numerical experiments comparing the method to

other ETD schemes. Most notably, we did a comparison with the Krylov-EETD

scheme proposed in Bhatt et al. (2018).

3.1 Quantities Concerning Advection

The main focus of this work is to investigate the ETD-RDP-IF scheme in the

presence of advection. There are two main quantifications of advection that need to

be considered in the context of numerical schemes. We describe these below.

3.1.1 Cell Péclet Number

As described in Section 1.3, the Péclet number describes which of the

physical phenomena advection or diffusion dominates on Ω. For the behavior of the

numerical scheme, the grid size h plays an important role. We therefore consider the

Péclet number on the scale of the grid size, choosing h as the characteristic length,

and define the cell Péclet number

Pc =
|a|h
d

,

where a and d are the advection velocity and diffusion constant as in Equation (2)

(Strikwerda 2004).

As described by Shampine (1994) and Voss and Khaliq (1996), the

eigenvalues of the discretization matrix M depend the cell Péclet number. They give

68

explicit formulas for these eigenvalues in the case of second-order central

differencing. In particular, they show that the eigenvalues are real for Pc ≤ 2 and

complex for Pc > 2 in the case of homogeneous Dirichlet boundary conditions. The

angle (in the complex plane) of the eigenvalues then increases as Pc increases.

Shampine (1994) derives similar statements for other boundary conditions as well.

Since M is the system matrix of an ODE system, imaginary eigenvalues

introduce oscillatory solutions even if the ODE were solved exactly. According to

Strikwerda (2004), these oscillations do not increase without bound (while they

consider a specific scheme, the result is applicable more generally). However, the

oscillations result from an insufficiently fine grid, i. e., too low resolution, and are

therefore considered spurious.

In summary, there is a change in the behavior of the solution at a certain

threshold value of Pc. Versteeg and Malalasekera (2007) show that central difference

schemes produce non-optimal results for large cell Péclet numbers. However, upwind

differencing schemes, which we also consider, do not exhibit this. Hundsdorfer and

Verwer (2003) give more extensive results on this as they consider the behavior of

various spatial and temporal discretization schemes given different cell Péclet

numbers.

In the following, we do not explicitly consider the cell Péclet number in many

cases. However, by varying the advection constant a, we observe both low-Péclet

and high-Péclet regimes. Note that often we change the spatial grid during an

experiment, that makes it more difficult to interpret in terms of cell Péclet number.

69

However, this enables us to interpret our results in terms of properties of the

original problem, namely the advection velocity a.

3.1.2 CFL Condition

In advection-heavy problems, e.g., in Computational Fluid Dynamics, an

important consideration is the Courant-Friedrichs-Lewy (CFL) condition (Hundsdorfer

and Verwer 2003).

The CFL condition was first described by Courant, Friedrichs and Lewy in their

1928 paper Courant et al. (1928) (see Courant et al. (1967) for a translation) where

they primarily considered the wave equation in one spatial dimension. Using the

method of characteristics, they first derived a domain of dependence of the solution

at each point. Namely, the solution at (x∗, t∗) depends on the triangle spanned by the

characteristic lines x− vt = x∗ − vt∗ and x+ vt = x∗ − vt∗ for t < t∗, where v denotes

the wave propagation speed. These characteristics pass through (x∗, t∗).

Given a specific fully discrete (explicit) scheme to solve the PDE, i. e., a

difference equation that approximates the PDE, they obtained an analogous result

describing the domain of dependence of each point. Specifically, they found that this

domain of dependence includes the domain of dependence of the original PDE only

under a certain constraint, namely when

C =
vk

h
≤ 1 .

This is the CFL condition. We call C the Courant number or CFL number.

70

If it is not satisfied, the domain of dependence of the discrete scheme is

smaller than that of the original PDE. This means that some changes of the initial

condition influence the solution of the PDE at a specific point, but do not influence the

solution of the numerical scheme (the difference equation) at the same point.

Courant et al. then considered letting h and k approach 0 while keeping their ratio

k/h, and hence the Courant number C, fixed. If the CFL condition is not satisfied,

Courant et al. show that the solution of the scheme cannot generally converge to the

solution of the PDE. Therefore, the CFL condition is a necessary condition for the

convergence of an explicit scheme. Specifically, it is a necessary condition for

stability (Hundsdorfer and Verwer 2003).

Since their original work, the condition has been refined and applied to various

schemes. Different bounds on the Courant number have been described for different

schemes (Hundsdorfer and Verwer 2003).

It can therefore be stated, adapted to advection-diffusion-reaction equations

where a, the advection velocity, describes the propagation, in the following way:

C =
ak

h
≤ Cmax

where Cmax depends on the scheme. Note that this formulation holds for a

one-dimensional problem, it may however be adapted for a multi-dimensional

problem (see Courant et al. (1928)).

In implicit schemes, each time step involves solving a system of linear

equations involving every point in space. Hence, the solution at each time step

71

depends on all points of the previous time step. I. e., the domain of dependence

contains the full spatial domain for all t < t∗. Since this is independent of k and h, it

suggests that the CFL condition is not necessary for implicit schemes (LeVeque

2007).

In this work, we have chosen to treat the advection term like the diffusion term,

i. e., as a linear term to which we applied the exponential in the form of the RDP

approximation. Applying the RDP approximation also involves solving a linear system

of equations that includes the discretization matrix of the advection term. Hence,

advection is in this sense treated implicitly. We may therefore expect that no CFL-type

restrictions apply for our ETD-RDP-IF scheme. We investigate this statement below.

3.2 Pure Advection Equation

While the ETD-RDP scheme presented here is suitable for more general PDEs

and a lot of considerations went into the treatment of possible nonlinearities, this work

focuses on the treatment of the advection term. In order to judge the performance of

the scheme in the presence of advection, we first consider a pure advection equation

ut + aux = 0 (26)

with initial condition u0(x). On an infinite domain, by the method of characteristics

(Evans 2010), the solution to this is

u(x, t) = u0(x− at).

This means that the initial condition is merely shifted. From a modeling perspective,

72

this is exactly what the advection term is used for — to describe how the

solution is transported or “shifted”.

We assume periodic boundary conditions for our initial analysis. This allows

for an infinite shift of the initial condition since the part that is shifted out of the

domain on one side, is shifted back in on the other side. Indeed, the solution given

above also works for a periodic domain (0;ω) with the natural adaptation

u(x, t) = u0((x− at)modω) = u0(x− at− bx− at

ω
cω).

Specifically, for a domain (0; 1),

u(x, t) = u0(x− at− bx− atc). (27)

Below, we applied the ETD-RDP-IF scheme to this equation using different

initial conditions u0. We vary the strength of advection in order to investigate the

behavior with respect to the quantities mentioned in Section 3.1. Since no diffusion is

present, we only consider the CFL number.

3.2.1 Wave-Packet Initial Condition

To numerically test for the presence of any CFL-type condition, we consider

the advection equation (26) first with a continuously differentiable initial function that

lives on a limited domain, specifically, a wave-packet of the form

u0(x) = sin2(2πx)I[0;0.5](x) (28)

where I denotes an indicator function. The full domain is Ω = (0; 1). The blue curve in

Figure 3 shows this function. The exact solution of this problem can be obtained

using Equation (27).

73

For the numerical simulation, we initially set h = 0.1 and k = 0.005. We then let

h and k approach 0 in such a way that the ratio k/h = 0.05 remains fixed, namely, by

successively decreasing h and k by a factor of 2. This allows us to analyze the

convergence behavior analogous to how Courant et al. (Courant et al. 1928)

considered it. Specifically, the Courant number is

C =
ak

h
=

ak

20k
=

a

20
.

In order to observe the behavior for various values of the Courant number, we then

performed this experiment for multiple values of the advection velocity a. Since the

exact solutions are available, we compute the error as

E(h, k) = ||U(h, k)−Ue||∞

where U(h, k) denotes the solution obtained by ETD-RDP-IF and Ue denotes the

exact solution evaluated at the same grid points as U(h, k). Note that we consider the

solutions at time T = 1.

Figure 2 shows the resulting errors obtained for certain values of a with a

central difference discretization. While we have run the experiment for more different

values of a, namely 0, 0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1, 2, 3, 5, 10, 20, 100, 200,

500, and 1000, we only report values for a subset of these. Unless otherwise noted,

the values we do not report did not give any new information. Note that h decreases

with k as described above, so h = 20k for each value of k.

We observe that the errors we obtain for a given grid size increase with a. This

is plausible since, for the exact PDE, increasing a is equivalent to increasing the final

time T . Therefore, this can be interpreted like going further in time. However, we

74

10−6 10−5 10−4

Time step k

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Er
ro

r a=0.01
a=0.1
a=0.5
a=1.0
a=5.0
a=10.0
a=100.0
a=1000.0

Figure 2. Errors of ETD-RDP-IF with central difference discretization for the advection
equation (26) with wave-packet initial condition (28) and varying advection velocities
a.

75

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 exact solution
numerical solution

Figure 3. Solution of the advection equation (26) with wave-packet initial condition
(28) for a = 1000 at T = 1. The numerical solution is produced by ETD-RDP-IF with
central difference discretization and h = 0.01, k = 0.0005.

keep the same number of time steps. Thus, it is analogous to increasing the time

step. Alternatively, one could argue that due to the increased advection velocity, the

change per time step is greater, and therefore the errors introduced by the

discretization are also greater.

It is important to observe, however, that the errors do not increase without

bound. In fact, the solution for a = 1000, h = 0.01, k = 0.0005 (Figure 3) looks like all

oscillations have been damped out, or, equivalently, that the solution has completely

diffused, to a constant function. Since the second-order central finite difference

76

scheme we used to discretize the advection is non-dissipative (Hundsdorfer and

Verwer 2003), this damping cannot be attributed to the spatial discretization. It must

therefore be inherent in the ETD-RDP scheme. We thus speculate that this can be

attributed to the L-stability (Asante-Asamani 2016) of the scheme which causes

damping of oscillations, particularly for larger time steps. This is further supported by

the fact that reducing the time step k while keeping h fixed yields non-constant

solutions. On the other hand, reducing h while keeping k fixed does not change the

solution profile. Therefore, we can clearly attribute the damping to the

time-discretization scheme, not the spatial discretization.

On the other hand, we see that for all values of a the error decreases when the

time step k is decreased. Indeed, the slope of all the curves in the log-log plot of

Figure 2 is approximately the same. This suggests that the ETD-RDP-IF scheme

converges to the true solution with approximately the same order of convergence for

all a. This is confirmed by the plot in Figure 4 which shows the numerical order of

convergence, i. e., the order by which the error is reduced when reducing h and k by

a factor of 2. We define the order to be

O(h, k) = log2(E(2h, 2k)/E(h, k))

This means that the error is reduced by a factor of 2O(h,k) when h and k are reduced

by a factor of 2. Since our scheme is a second-order scheme, we expect O(h, k) to

be approximately 2. In this case, we observe orders of only about 1.3. We speculate

that this can be attributed to the fact that our initial condition u0 is not a smooth

function, it is continuously differentiable in x only once.

77

10−6 10−5 10−4

Time step k

0.0

0.5

1.0

1.5

Or
de

r

a = 1000.0

a=0.01
a=0.1
a=0.5
a=1.0
a=5.0
a=10.0
a=100.0
a=1000.0

Figure 4. Numerical orders of convergence of ETD-RDP-IF with central difference
discretization for the advection equation (26) with wave-packet initial condition (28)
and varying advection velocities a.

78

From this observation, we conclude that we have not observed a CFL-type

condition. An advection velocity of a = 1000 above corresponds to a Courant number

C = 50. The fact that the numerical solution still converges to the exact solution at

C = 50 means that if there is a CFL-type condition, Cmax would need to be larger than

50. This is in line with our expectations that there is no CFL-type condition due to the

implicit treatment of the advection (and diffusion) terms. Note that finer grids are

necessary to numerically observe the convergence for large values of a. This is due

to the fact that, as described above, the errors for grids are so large that the structure

of the exact solution is no longer retained. Due to this and computational limitations,

we were unable to obtain conclusive results for greater values of a.

The other discretizations we considered, namely second-order upwind-biased

(Fromm) and third-order upwind-biased yielded very similar results. We therefore do

not explicitly report them here.

3.2.2 Boxcar Initial Condition

We performed the same experiment as described in the previous Section 3.2.1

with a discontinuous initial condition. For this, we chose a boxcar-type function

u0(x) = I[0.3;0.7](x) (29)

on the domain Ω = (0; 1). We again assumed periodic boundary conditions.

Figure 5 shows the numerical and exact solutions of the advection equation

(26) with the boxcar initial condition and a = 1 at T = 0.1 for differently fine grids using

the second-order central finite difference scheme for advection. We observe that the

79

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) h = 0.01, k = 0.001/2

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) h = 0.01/4, k = 0.001/8

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) h = 0.01/16, k = 0.001/32

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d) h = 0.01/512, k = 0.001/1024

Figure 5. Solution of the advection equation (26) with boxcar initial condition (29) for
a = 1 at T = 0.1. Blue: exact solution, orange: numerical solution. The numerical
solution is produced by ETD-RDP-IF with central difference discretization.

80

numerical solutions exhibit oscillations that are not present in the exact solution.

These spurious oscillations can be attributed to numerical dispersion. As described,

e. g., in Hundsdorfer and Verwer (2003) or Strikwerda (2004), numerical solutions to

the advection equation cause different Fourier modes (corresponding to different

frequencies in space) of the initial condition to be transported at different velocities. In

particular, high-frequency Fourier modes are transported more slowly than

lower-frequency Fourier modes. The initial condition we used here is not smooth, and

therefore the coefficients of high-frequency modes are large. This causes a shift of

the different Fourier modes relative to each other, causing the spurious oscillations.

We observe that most of the spurious oscillations are reduced as the grid

becomes finer. However, there are “spikes” in the numerical solution at the

discontinuities of the exact solution. These remain for the finest grids we were able to

compute. Furthermore, they appear to neither increase nor decrease significantly in

magnitude as the grid becomes finer. Instead, the spikes become thinner, their

support becomes smaller. For much finer grids, a reduction in magnitude might occur

but we were unable to observe this due to computational limitations.

Due to these spikes, the maximum norm we used before cannot capture the

apparent improvement in the approximation. I. e., in our experiments we do not

observe convergent behavior in the maximum norm, the error remains approximately

constant. Instead, we use the Euclidean norm here. Note that we normalized it for

each grid size with the Euclidean norm of the initial condition discretized with the

corresponding grid size. Otherwise, the increase in “dimension” (i. e., number of grid

points) alone would cause the norm of the error to increase as h decreases.

81

10−6 10−5 10−4

Time step k

10−2

10−1

100

Er
ro

r

a=0.01
a=0.1
a=0.5
a=1.0
a=5.0
a=10.0
a=100.0
a=1000.0

Figure 6. Errors of ETD-RDP-IF with central difference discretization for the advection
equation (26) with boxcar initial condition (29) and varying advection velocities a.

82

The errors, in the Euclidean norm, are shown in Figure 6. Like for the

wave-packet, the errors increase as a increases, but convergence can be observed

for all a. Therefore, we also do not observe a CFL-type condition for this initial

condition. Just like before, larger a require finer grids before convergence can be

observed since for large h and k the overall structure of the solution is lost. However,

compared to the wave-packet, the order of convergence is smaller, about 0.3. We

assume that this is due to the discontinuity of u0, i. e., u0 is highly non-smooth.

One anomaly can be seen in the plot in Figure 6. For a = 0.01, the error at first

increases before it decreases. This is caused by the spikes we described above.

Figure 7 shows the results we obtained for a = 0.01 for different grids. It can be seen

that, initially, the spikes are small in magnitude while the slope at the discontinuities is

noticeably lower than in the exact solution. As h and k decrease, the slope increases

to more closely match the desired curve. However, the spike increases significantly in

magnitude. This causes the error to increase. As the grid is further refined, the spike

no longer grows, in fact it even decreases slightly. This is corresponding to the later

decrease in error and convergent behavior.

It is also noteworthy that the oscillations do not blow up for coarse grids.

Instead, we observe a behavior similar to the wave-packet initial condition. For small

a, the numerical solution is qualitatively very similar to the exact solution, even for

coarse grids. For large a and large h and k, the numerical solution appears to

completely diffuse and becomes a constant function. We attribute this, again, to the

L-stability of the ETD-RDP-IF scheme which causes damping of oscillations. In fact,

we know that the L1-norm, i. e., the integral, of the initial condition is 0.4. This is also

83

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) h = 0.01, k = 0.001/2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) h = 0.01/2, k = 0.001/4

0.0 0.2 0.4 0.6 0.8 1.0

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

(c) h = 0.01/32, k = 0.001/64

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d) h = 0.01/512, k = 0.001/1024

Figure 7. Solution of the advection equation (26) with boxcar initial condition (29) for
a = 0.01 at T = 0.1. Blue: exact solution, orange: numerical solution. The numerical
solution is produced by ETD-RDP-IF with central difference discretization.

84

10−6 10−5 10−4

Time step

10−1

Er
ro

r

a = 1.0
second-order central
second-order upwind-biased
third-order upwind-biased

(a) a = 1

10−6 10−5 10−4

Time step

10−1

2 × 10−1

3 × 10−1

4 × 10−1

Er
ro

r

a = 100.0
second-order central
second-order upwind-biased
third-order upwind-biased

(b) a = 100

Figure 8. Errors of ETD-RDP-IF with different spatial discretizations for the advection
equation (26) with boxcar initial condition (29).

10−2 10−1 100 101 102 103

Runtime

10−1

Er
ro

rs

a = 1.0
second-order central
second-order upwind-biased
third-order upwind-biased

(a) a = 1

10−1 100 101 102 103

Runtime

10−1

2 × 10−1

3 × 10−1

4 × 10−1

Er
ro

rs
a = 100.0

second-order central
second-order upwind-biased
third-order upwind-biased

(b) a = 100

Figure 9. Efficiency of ETD-RDP-IF with different spatial discretizations for the advec-
tion equation (26) with boxcar initial condition (29).

the constant value our solution approaches in this case. This supports the

assumption that the effect is due to a damping of oscillations in the scheme.

Besides that, we observe different results for the different discretizations of the

advection term we implemented. Figure 8 shows the observed errors for selected

values of a. Figure 9 shows the errors for the same values of a plotted against the

computation time (single thread, Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz)

required. We show the latter plots since the different discretizations require different

85

stencils, and therefore change the band structure of our discretization matrix. This

might have an impact on computation time. Note that this selection is representative

insofar as we obtained similar results for other values of a.

We can see that for lower a, e. g., a = 1, the third-order upwind-biased scheme

produces the lowest errors for the same time step. Also, it produces the lowest errors

for a given runtime. This discretization, therefore, seems to be the most efficient

choice. In fact, considering the slope of the lines in the aforementioned log-log plots,

we can see that the error also decreases faster for this discretization. We observe a

convergence order of about 0.32 for the second-order central finite difference scheme

and an order of up to 0.38 for the third-order upwind-biased scheme. For larger

values of a, the difference between the discretizations appears less pronounced.

3.3 Benchmark Example with Known Exact Solution

In order to evaluate the real-world performance of the ETD-RDP-IF scheme,

we test it on some more complicated ADR problems. Bhatt et al. (2018) described

multiple ADR problems that they used to evaluate their Krylov-EETD scheme. The

results reported in that paper and the published code of the Krylov-EETD scheme

allowed us to perform a comparison of both schemes in terms of accuracy and

runtime.

Bhatt et al. (2018) first tested their Krylov-EETD scheme on a linear

benchmark problem with periodic boundary conditions.

ut =
d

3
∆u− a

3
(ux + uy + uz)− bu+ v

vt =
d

3
∆v − a

3
(vx + vy + vz)− cv

(30)

86

on the three-dimensional domain Ω = (0; 2π)3 with real constants b and c. Given the

initial condition

u0(x, y, z) = 2 · cos(x+ y + z)

v0(x, y, z) = (b− c) · cos(x+ y + z),

this problem has the exact solution

u(x, y, z, t) = (e−(b+d)t + e−(c+d)t) · cos(x+ y + z − at)

v(x, y, z, t) = (b− c)e−(c+d)t · cos(x+ y + z − at).

This closed-form analytical solution allows us to compute the errors precisely

E(h, k) as in Section 3.2.1 and compare them to the errors of Krylov-EETD. For a

comparison, we performed the same numerical experiments as in Bhatt et al. (2018)

(Table 1). The parameters were set to a = 3, b = 100, c = 1 and d = 1. We used

N = 10 · 2i spatial grid points per dimension, i. e., N3 spatial grid points in total,

corresponding to h ≈ 0.628/2i, and simulated up to te = 1.0 using a time step of

k = 0.005/2i. We were able to reproduce the same errors (up to at least 3 significant

digits) in our tests, indicating that the precision of the ETD-RDP-IF scheme we used

is approximately the same. Table 1 lists the precise results up to 3 significant digits.

The errors are given in the maximum norm as described in Section 3.2.1. Like for

Krylov-EETD, the order of convergence can consequently be concluded to be 2. We

also notice that the computation time is lower for Krylov-EETD.

For a more extensive comparison, we performed the same experiment for

different values of a while keeping all other parameters fixed. The values of a we used

were 0, 0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1, 2, 3, 5, 10, 20, 100, 200, 500, 1000. As

87

h 2π/10 2π/20 2π/40 2π/80
k 5E-03 5E-03/2 5E-03/4 5E-03/8

ETD-RDP-IF E(h, k) 2.62E-02 6.76E-03 1.69E-03 4.23E-04
2nd-order central CPU(s) 0.38 6.80 78.8 1088

ETD-RDP-IF E(h, k) 1.19E-02 3.15E-03 8.24E-04 2.13E-04
2nd-order upwind-biased CPU(s) 0.44 7.21 84.0 1177

ETD-RDP-IF E(h, k) 3.83E-02 1.51E-04 1.48E-04 5.32E-05
3rd-order upwind-biased CPU(s) 0.44 7.15 84.2 1170

Krylov-ETD E(h, k) 2.62E-02 6.76E-03 1.69E-03 4.23E-04
adaptive CPU(s) 0.46 2.23 27.1 476

Krylov-ETD E(h, k) 2.62E-02 6.76E-03 1.69E-03 4.23E-04
non-adaptive CPU(s) 0.68 4.49 101 2469

Table 1. Errors and computation time for the three-dimensional benchmark problem
(30) with different types of spatial and temporal discretizations on different grids. CPU
time is for a single core of an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

mentioned in Section 2.3, in certain situations the runtime of Krylov-EETD increased

beyond feasibility due to the adaptive nature of the expv function. In this problem, we

observed that more steps in expv were necessary to achieve the required precision

for large values of a. We, therefore, chose a threshold for the number of steps that

expv is allowed to take. If the time step becomes small enough that this threshold

would be crossed, we abort the computation and state that no result could be

obtained instead of attempting the computation. No values are reported in this case.

For the non-adaptive version of Krylov-EETD, we noticed that instabilities arise

for large values of a, i. e., the error increases beyond the order of magnitude of the

true solution. In these cases, we note that we have clearly not obtained reasonable

results and also do not report the values. We interpret this behavior as a kind of

instability.

Besides this, we also tested the ETD-RDP-IF scheme with the different

discretization schemes for advection we described in this work. Note that the

88

10−36×10−4 2×10−3 3×10−34×10−3
Time step

10−4

10−3

Er
ro
r

Krylo -EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(a) a = 0.01

10−36 × 10−4 2 × 10−3 3 × 10−34 × 10−3

Time step

10−4

10−3

Er
ro

r

(b) a = 0.5

10−36 × 10−4 2 × 10−3 3 × 10−34 × 10−3

Time step

10−4

10−3

10−2

Er
ro

r

(c) a = 3.0

10−36 × 10−4 2 × 10−3 3 × 10−34 × 10−3

Time step

10−3

10−2

10−1

Er
ro

r

(d) a = 100

Figure 10. Error comparison of ETD-RDP-IF with different spatial discretizations and
Krylov-EETD for the three-dimensional benchmark problem (30).

Krylov-EETD scheme uses a second-order central scheme for the discretization of

advection. Therefore, we consider two main comparisons, the comparison of

Krylov-EETD with ETD-RDP-IF given second-order central schemes, and the

comparison of the central scheme with the upwind-biased schemes within

ETD-RDP-IF. It is to be expected that Krylov-EETD would benefit in a similar way

from upwind-biased schemes as ETD-RDP-IF does.

Errors. Figure 10 shows the errors we obtained for different values of a for the

different schemes we tested. For a comparison of ETD-RDP-IF with the Krylov-EETD

scheme, note first that for (a) – (c) the graphs of the errors of Krylov-EETD are not

89

clearly visible since they coincide with the values for ETD-RDP-IF with central finite

difference discretization of advection. Therefore, both methods produce nearly

identical errors. This holds for both implementations of the Krylov-EETD scheme with

the adaptive and non-adaptive expv function. In fact, we also compared the

respective solutions and noticed that they are nearly identical as well, i. e., the

differences between the solutions are significantly lower (at least by a factor 103 lower

for a ≤ 10) than the errors of either scheme. Since the problem (30) is linear, this

suggests the conclusion that both methods yield the same results for linear problems

up to different rounding errors introduced by the different ways of computing the

result. Note that the observed order of convergence for the Krylov-EETD scheme and

the ETD-RDP-IF scheme with central finite differences is approximately 2.

We notice, however, that for larger values of a, Figure 10 (d), there are

differences in the errors, and therefore also in the solutions. The Krylov-EETD

scheme with the adaptive expv function exceeded feasible computation times here,

so no values are reported. It is not immediately clear how the differences between the

errors arise. One possible reason is that the above conclusion is incorrect, and both

schemes do not produce identical results up to rounding for general linear problems.

Instead, the solutions of the schemes depend differently on a. Since all errors are

large compared to, e. g., Figure 10 (c), it is also possible that the differences can be

attributed to a loss of precision in the non-adaptive expv function, i. e., the

Krylov-subspace approximation of the matrix exponential. This is supported by the

fact that the adaptive function would require a large number of steps that crossed our

threshold. Further experiments are necessary to obtain conclusive results on this.

90

10−36×10−4 2×10−3 3×10−34×10−3
Time step

100

101

102

103

Ru
nt
im

e

Krylo -EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

Figure 11. Runtime comparison of ETD-RDP-IF with different spatial discretizations
and Krylov-EETD for the three-dimensional benchmark problem (30) with a = 3.

Considering the different discretization schemes in the ETD-RDP-IF

implementation, the upwind-biased schemes produce lower errors, with the

third-order scheme having lower errors than the Fromm scheme. This holds

particularly for larger values of a. For small values of a and finer grids, the errors

obtained by both upwind-biased schemes approach those of the central difference

scheme. The observed order of convergence is therefore below 2. For larger values

of a, the order of convergence fluctuates strongly. However, the errors are always

below those produced by the central difference scheme. We therefore speculate that

this fluctuation is reduced for finer grids. We were not able to test this due to

computational limits.

Runtimes. The adaptive Krylov-EETD scheme consistently exhibits the lowest

runtimes when it is able to obtain a solution. As shown in Figure 11, it is 2 to 4 times

faster than the ETD-RDP-IF implementations we tested, except for the coarsest grid

we considered. This makes it the most efficient implementation for this problem. The

91

same pattern can be observed for all other values of a. However, in spite of the good

performance for a ≤ 20, for larger values of a, we were unable to complete the

computation due to possibly excessive runtimes. This suggests the existence of a

stability regime outside of which increasingly more computation time is required to

maintain the desired precision in the matrix exponential. In particular, we find that

difficulties arise in regimes with strong advections.

The non-adaptive implementation of the Krylov-EETD scheme, in contrast,

exhibits the greatest computation times for all experiments. This can be attributed to

the remaining adaptivity of the scaling-and-squaring algorithm in the expm function

which compensates for the larger step in the Arnoldi algorithm. However, it is able to

produce results for a wider range of advection velocities.

The different discretization schemes implemented with ETD-RDP-IF show

similar runtimes. Due to the larger stencils used for both upwind-biased schemes,

these have slightly longer runtimes. See Table 1 for detailed values. As shown in

Figure 12, the efficiency is, however, better than for the central difference scheme for

multiple values of a due to the lower errors.

Further Convergence Considerations for Finer Grids. In order to analyze the

convergence behavior of ETD-RDP-IF in more detail, we performed an additional test

run keeping the time step constant at its lowest tested value, k = 0.005/8, and testing

different spatial accuracies for the central difference discretization. With a = 3, we

found the same errors as seen in Table 1. Therefore, we conclude, that convergence

is indeed O(h2), as doubling the number of grid points leads to a reduction of the

error by factor 4.

92

100 101 102 103
Runtime

10−4

10−3

Er
ro
r

(a) a = 0.01

100 101 102 103
Runtime

10−4

10−3

Er
ro
r

(b) a = 0.5

100 101 102 103
Runtime

10−4

10−3

10−2

Er
ro
r

(c) a = 3

100 101 102 103
Runtime

10−3

10−2

10−1

Er
ro
r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(d) a = 100

Figure 12. Efficiency comparison of ETD-RDP-IF with different spatial discretizations
and Krylov-EETD for the three-dimensional benchmark problem (30).

93

In contrast, however, we found that keeping spatial accuracy constant (at

N = 80, central differences) while iterating different time steps, no such convergence

could be observed. We found rapidly decreasing errors that then remained

approximately constant below a threshold of k0 ≈ 0.005. This kind of behavior can be

explained by the limitations in spatial accuracy. I. e., decreasing k below k0 does not

improve the approximation quality since most of the error is introduced due to the

spatial discretization.

In order to observe a convergence behavior in k, we reduced the problem to

two dimensions:

ut =
d

2
∆u− a

2
(ux + uy)− bu+ v

vt =
d

2
∆v − a

2
(vx + vy)− cv

(31)

on the two-dimensional domain Ω = (0; 2π)2 where a = 3, b = 100, c = 1 and d = 1.

Analogous to the three-dimensional problem above, given the initial condition

u0(x, y) = 2 · cos(x+ y)

v0(x, y) = (b− c) · cos(x+ y),

this problem has the exact solution

u(x, y, t) = (e−(b+d)t + e−(c+d)t) · cos(x+ y − at)

v(x, y, t) = (b− c)e−(c+d)t · cos(x+ y − at).

This allowed us to increase N by a factor of 4 while the computation remained

feasible. With this increased spatial accuracy, we observed the same behavior of the

errors with respect to k as above. There is a significant drop in errors for large k until

94

the limits imposed by spatial grid size are reached. Table 2 shows the observed

errors.

h 2π/320 2π/320 2π/320 2π/320
k 4E-02 2E-02 1E-02 5E-03

E(h, k) 7.22E+16 2.37E-01 2.88E-05 2.44E-05
CPU(s) 1.18 2.35 5.24 9.97

h 2π/320 2π/320 2π/320
k 5E-03/2 5E-03/4 5E-03/8

E(h, k) 2.58E-05 2.63E-05 2.64E-05
CPU(s) 21.6 38.5 80.1

Table 2. Errors and computation time for the two-dimensional benchmark problem
(31) with different types of spatial and temporal discretizations on different grids. CPU
time is for a single core of an Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz.

Therefore, we again conclude that the limitations in accuracy imposed by the

grid size prevent the error from becoming small enough for smaller k in order to

detect the asymptotic behavior as k → 0. Restating the problem for a single

dimension allowed us to increase N considerably and to consider smaller values of k.

The problem reads:

ut = d∆u− a(ux)− bu+ v

vt = d∆v − a(vx)− cv

(32)

on the domain Ω = (0; 2π) with coefficients as above. The initial condition reduces to

u0(x) = 2 · cos(x)

v0(x) = (b− c) · cos(x),

and the exact solution becomes

u(x, t) = (e−(b+d)t + e−(c+d)t) · cos(x− at)

v(x, t) = (b− c)e−(c+d)t · cos(x− at).

95

Table 3 shows exemplary errors and the observed order of convergence. The

lower order in the last column can be explained by the limits of spatial grid size as for

smaller k the error does not decrease further.

h 2π/10240 2π/10240 2π/10240 2π/10240
k 1E-02 5E-03 5E-03/2 5E-03/4

E(N, k) 6.70E-05 1.68E-05 4.20E-06 1.04E-06
Order - 2.00 2.00 2.01
h 2π/10240 2π/10240 2π/10240
k 5E-03/8 5E-03/16 5E-03/32

E(N, k) 2.55E-07 6.20E-08 2.55E-08
Order 2.03 2.04 1.28

Table 3. Errors and computation time for the one-dimensional benchmark problem
(32) with different types of spatial and temporal discretizations on different grids. CPU
time is for a single core of an Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz.

In summary, since convergence considers the limit as k → 0, we have

observed a second-order convergence in k. However, this only becomes apparent for

very fine spatial grids and small time steps k. Hence, we conclude that spatial

accuracy, not temporal accuracy is the limiting factor for this problem.

3.4 Schnakenberg Problem

The Schnakenberg problem was originally described in Schnakenberg (1979).

It models auto-catalytic chemical reactions with an oscillatory component (Bhatt and

Khaliq 2015). It has been extended in Madzvamuse (2006), Fernandes and

Fairweather (2012), and Bhatt et al. (2018) to two- or three-dimensional IBVPs, some

of which include an advection term besides the diffusion and reaction terms.

96

Schnakenberg Reaction-Diffusion Model. The first problem we investigated is

given as (Bhatt and Khaliq 2015)

∂u1

∂t
= d1(

∂2u1

∂x2
+

∂2u1

∂y2
) + γ(a− u1 + u2

1u2)

∂u2

∂t
= d2(

∂2u2

∂x2
+

∂2u2

∂y2
) + γ(b− u2

1u2)

Ω = (0; 1)× (0; 1) , t > 0

subject to Neumann boundary conditions. The initial conditions are:

u1(x, y, 0) = 0.919145 + 0.0016 · cos(2π(x+ y)) + 0.01 ·
8∑

j=1

cos(2πjx)

u2(x, y, 0) = 0.937903 + 0.0016 · cos(2π(x+ y)) + 0.01 ·
8∑

j=1

cos(2πjx)

We performed a simulation with coefficients given in Bhatt and Khaliq (2015)

in order to reproduce the figures shown there. These are the following: a = 0.126779,

b = 0.792366, d1 = 1.0, d2 = 10.0, and γ = 1000. Those coefficients have in turn been

first used in Fernandes and Fairweather (2012). Therefore, we were able to compare

our results to both papers. Only visual comparison of the resulting figures was

possible as we do not have access to the code used for either paper.

Similarly to both papers, we focus on the concentration profile of u1 in Ω. We

simulate from t0 = 0 to te = 5. Figures 13 and 14 show the results obtained at certain

points in time.

At a glance, the images we produced look similar to those from both

references. Close examination of the images shows that they visually match the

images shown in Fernandes and Fairweather (2012) more closely than those shown

in Bhatt and Khaliq (2015). For example, Figures 13 (b) and 14 (b) reveal that the

97

(a) t = 0.025 (b) t = 0.125

(c) t = 0.15 (d) t = 0.2

(e) t = 0.225 (f) t = 5

Figure 13. Numerical solution of the concentration profiles of species u1 for the two-
dimensional Schnakenberg reaction-diffusion model at different points in time. The
numerical solutions were obtained with ETD-RDP-IF with central difference discretiza-
tion.

98

(a) t = 0.025 (b) t = 0.125

(c) t = 0.15 (d) t = 0.2

(e) t = 0.225 (f) t = 5

Figure 14. Aerial views of Figure 13

99

saddle points that are located between the peaks (in direction y) seem darker in

Figure 14 (b) than they do in Fernandes and Fairweather (2012), i. e., the values of u1

at those points are relatively closer to the values at the peaks. In Bhatt and Khaliq

(2015), the values are relatively lower than in Fernandes and Fairweather (2012).

Similar behavior can be observed in Figures 13 (c) – (e), and 14 (c) – (e),

respectively. In 13 (f) and 14 (f) in contrast, the simulation has converged to its steady

state well enough that any remaining differences are too minor to be observed

visually.

Schnakenberg ADR Model. Furthermore, we performed simulations of a

three-dimensional Schnakenberg ADR model as given in Bhatt et al. (2018)

∂u1

∂t
+ a1(

∂u1

∂x
+

∂u1

∂y
+

∂u1

∂z
) = d1(

∂2u1

∂x2
+

∂2u1

∂y2
+

∂2u1

∂z2
) + γ(α− u1 + u2

1u2)

∂u2

∂t
+ a2(

∂u2

∂x
+

∂u2

∂y
+

∂u2

∂z
) = d2(

∂2u2

∂x2
+

∂2u2

∂y2
+

∂2u2

∂z2
) + γ(β − u2

1u2)

Ω = (0; 1)× (0; 1)× (0; 1) , t > 0,

(33)

subject to periodic boundary conditions. The initial conditions were

u1(x, y, z, 0) = 1− e−10((x−1/2)2+(y−1/2)2+(z−1/2)2)

u2(x, y, z, 0) = 0.9− e−10((x−1/2)2+(y−1/2)2+(z−1/2)2)

We considered the same parameters as Bhatt et al. (2018), d1 = 0.05,

d2 = 0.01, α = 1.0, β = 0.9, γ = 1.0. We set a1 = a2 = a and varied a as described

above. We simulated up to time T = 1.0 using a spatial grid with h = 1/32 and

different values of k, specifically k = 0.01/2i, i = 0, . . . , 5.

Error Estimation. Since we do not know an exact analytical solution to this

problem, we cannot directly compute the errors. Instead, we use an error estimate.

100

Like Bhatt et al. (2018), we define

E(h, k) = ||U(h, k)− U(h, 2k)||∞

The assumption underlying this error estimate is that U(h, k) is closer to the true

solution than U(h, 2k). Assuming second-order convergence to the true solution, and

assuming that h is small enough that it does not limit the precision, we would observe

second-order convergence in k. Then,

||U(h, k)− Ue||∞=
1

4
||U(h, 2k)− Ue||∞.

Therefore, U(h, k) is sufficiently closer to the true solution for E(h, k) to yield a good

error estimate. We choose this definition instead of

Ẽ(h, k) = ||U(h, k)− U(h, k/2)||∞

to obtain a more conservative and less computationally expensive estimate.

It is important to note that since the error estimate we used is independent of

the true solution, we might not notice if our scheme instead converges to an incorrect

solution. This might happen, for example, due to a bug in the code, like a sign error.

We therefore first performed a sanity check and compared the solutions to each

other. For the solutions obtained using the second-order central differencing scheme,

we were able to show that the difference of the solutions is in the order of magnitude

of the greatest error estimates. This means that any discrepancies between the

solutions are explained by the errors. This strongly suggests that the solutions

converge to the same limit. The solutions obtained using upwind-biased schemes, on

the other hand, differ from the other solutions by more than the error estimates. Since

101

we are only letting k decrease, however, this can be attributed to the fact the

differences in the spatial discretization remain constant over all the test runs we

performed. Hence, we can conclude that we found no obvious discrepancies.

When computing the error estimates for the Krylov-EETD scheme, there were

discrepancies from the errors reported in Bhatt et al. (2018). Our translation of the

code to Python showed lower error estimates. Comparing the implementations

showed that the original implementation by Bhatt et al. (2018) deviated from the

description of the algorithm in the paper. Fixing this in the original Matlab

implementation yielded the same error estimates as we had observed. Therefore, in

the following, we report the error estimates we obtained after this fix in order to

achieve a more meaningful comparison.

Results. Figure 15 shows the error estimates for select values of a. Note that

we simulated for more different values of a and the plots depicted here show the

trends we observed. For small values of a, the errors of ETD-RDP-IF are consistently

lower than those of Krylov-EETD. Since the different discretization schemes we used

for ETD-RDP-IF yield similar errors, we do not mention them separately. Note that

where no values of the non-adaptive Krylov-EETD scheme are shown, the

computation was not possible due to reaching the limits of floating point numbers,

i. e., results were reported as infinite or nan. This suggests that the numerical

solution blows up in these cases, indicating instability. This instability is reduced by

the adaptive scheme.

As a increases, the errors of ETD-RDP-IF increase, similarly to what we

observed in Section 3.2. At a = 100 and greater, we no longer observe convergent

102

10−3

Time step

10−7

10−6

10−5

Er
ro

r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(a) a = 0.01

10−3

Time step

10−6

10−5

Er
ro

r

(b) a = 0.5

10−3

Time step

10−6

10−5

10−4

10−3

Er
ro

r

(c) a = 3.0

10−3

Time step

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Er
ro

r

(d) a = 100

Figure 15. Error comparison of ETD-RDP-IF with different spatial discretizations and
Krylov-EETD for the Schnakenberg ADR model (33). Note that where no values for
Krylov-EETD are shown, computation time was infeasible or errors were exceedingly
large.

103

behavior. Instead, errors increase as the temporal grid becomes finer. This is

unexpected since the error for the coarse temporal grid is still low at about 4 · 10−5.

Further investigation is needed to explain this phenomenon.

The errors of the adaptive Krylov-EETD, in contrast, remain nearly constant for

different a on the same grid, and we can still see convergent behavior at a = 100. The

non-adaptive Krylov-EETD scheme produces the same errors wherever it is stable.

However, it shows instabilities for coarse grids and for large values of a. We therefore

conclude that the adaptive implementation of Krylov-EETD is the most reliable

scheme for this problem.

Runtimes are shown in Figure 16. It can be seen that the adaptive

Krylov-EETD has the longest runtimes while ETD-RDP-IF is the fastest. The

non-adaptive implementation has runtimes that are slightly higher than those of

ETD-RDP-IF. For ETD-RDP-IF and the non-adaptive Krylov-EETD, runtimes remain

near constant across all values of a. The same is approximately true for a < 20 for the

Krylov-EETD scheme. After a = 1, the errors of Krylov-EETD are sufficiently lower

that it becomes more efficient than the ETD-RDP-IF scheme.

As a increases further, most notably for a ≥ 20, the runtime of the adaptive

implementation of Krylov-EETD increases. However, as noted above, in this regime,

the adaptive Krylov-EETD is more reliable than all other implementations. This is due

to the adaptive nature of the scheme. The reliability and low errors are obtained at

the cost of runtime.

104

10−3 10−2
Time step

0

100

200

300

400

Ru
nt
im

e

Kr lov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(a) a = 0.01

10−3 10−2
Time step

0

50

100

150

200

250

300

350

Ru
nt
im

e

Kr lov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(b) a = 0.5

10−3 10−2
Time step

0

50

100

150

200

250

300

350

Ru
nt
im

e

Kr lov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(c) a = 3.0

10−3 10−2
Time step

0

100

200

300

400

500

600

Ru
nt
im

e

Krylo -EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central
ETD-RDP second-order upwind-biased
ETD-RDP third-order upwind-biased

(d) a = 100

Figure 16. Runtime comparison of ETD-RDP-IF with different spatial discretizations
and Krylov-EETD for the Schnakenberg ADR model (33). Note that where no values
for Krylov-EETD are shown, computation time was infeasible or errors were exceed-
ingly large.

105

3.5 Brusselator ADR Model

The last model we simulated is the Brusselator ADR model that can be

interpreted as a generalization of the Schnakenberg model. According to Kang and

Pesin (2005) the Brusselator model was first proposed by Prigogine and Lefever in

1968. The term Brusselator was first used by Tyson (Tyson 1976). Here, we consider

an extended Brusselator model described in Bhatt et al. (2018) that also includes an

advection term:

∂u1

∂t
+ a1(

∂u1

∂x
+

∂u1

∂y
+

∂u1

∂z
) = d1(

∂2u1

∂x2
+

∂2u1

∂y2
+

∂2u1

∂z2
) + u2

1u2 − (α + 1)u1 + β

∂u2

∂t
+ a2(

∂u2

∂x
+

∂u2

∂y
+

∂u2

∂z
) = d2(

∂2u2

∂x2
+

∂2u2

∂y2
+

∂2u2

∂z2
)− u2

1u2 + αu1

Ω = (0; 1)× (0; 1)× (0; 1) , t > 0,

(34)

subject to the vanishing normal derivative boundary conditions and initial conditions

u1(x, y, z, 0) = 1 + sin(2πx) · sin(2πy) · sin(2πz)

u2(x, y, z, 0) = 3

α and β can be interpreted rate constants of the biochemical reactions described by

this system (Bhatt et al. 2018).

In order to compare ETD-RDP-IF and Krylov-ETD (Bhatt et al. 2018), we apply

the same parameters as the authors do. These are d1 = 0.02, d2 = 0.01, α = 1.0,

β = 2.0. We also set a1 = a2 = a and varied a to investigate the effect of advection.

We simulate up to te = 1.0 using a fixed spatial grid of 32× 32× 32 and varying

temporal resolutions.

106

10−3

Time step

10−6

10−5

10−4
Er

ro
r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(a) a = 0.01

10−3

Time step

10−7

10−6

10−5

10−4

Er
ro

r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(b) a = 0.5

10−3

Time step

10−7

10−6

10−5

Er
ro

r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(c) a = 3.0

10−3

Time step

10−5

10−4

10−3

Er
ro

r

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(d) a = 100

Figure 17. Error comparison of ETD-RDP-IF with central difference discretization
and Krylov-EETD for the Brusselator ADR model (34). Note that where no values for
Krylov-EETD are shown, computation time was infeasible or errors were exceedingly
large.

Since there is no closed-form solution to this problem, we estimate the error as

described in Section 3.4. The errors for some values of a are shown in Figure 17.

Note that we only show the central finite difference discretization of advection here

since we have not implemented the upwind-biased discretizations for the vanishing

normal derivative boundary condition. No values are reported, like previously, for the

adaptive implementation of Krylov-EETD when computation times were suspected to

be too high, and for the non-adaptive implementation when errors occurred due to

reaching the limits of the floating point representation.

107

Considering ETD-RDP-IF, we observe errors that are consistently below 10−4.

For a ≤ 20 decreasing with an order of about 2 as the grid is refined. As a increases

further, errors remain below 10−4 but no clear convergent behavior can be seen.

Instead, we see irregular patterns of errors increasing or decreasing as the temporal

grid is refined. Since these fluctuations are small, this suggests that the spatial grid is

not fine enough for the corresponding problem, so a finer temporal grid does not

improve the error.

The errors of Krylov-EETD are below those of ETD-RDP-IF for a ≤ 20

wherever we were able to obtain solutions. As can be seen, the orders of

convergence fluctuate somewhat. However, we observed that they approach 2 as the

grid is refined. For a ≥ 100, the non-adaptive implementation was unable to produce

any solutions, and the adaptive version was only able to produce three solutions for

a = 100 and two for a = 200 - such that we obtained two and one error estimates,

respectively. These 3 error estimates are greater than those observed with

ETD-RDP-IF.

We therefore conclude that ETD-RDP-IF produces larger errors where

Krylov-EETD works reliably. However, ETD-RDP-IF produces reliable over a wider

range of parameters. This conclusion is subject to one caveat: When the error

estimate no longer decreases, the fundamental assumption of convergence required

for the error estimate is violated. The errors may therefore be reported incorrectly.

Figure 18 shows the runtimes needed by the different schemes. The runtimes

of ETD-RDP-IF remain nearly constant for different values of a, since there is no

adaptivity that could influence runtimes significantly. The same holds for the

108

10−3 10−2

Time step

0

50

100

150

200

250

300

Ru
nt

im
e

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(a) a = 0.01

10−3 10−2

Time step

0

50

100

150

200

250

300

Ru
nt

im
e

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(b) a = 0.5

10−3 10−2

Time step

0

50

100

150

200

250

300

Ru
nt

im
e

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(c) a = 3.0

10−3 10−2

Time step

0

50

100

150

200

250

300

Ru
nt

im
e

Krylov-EETD adaptive
Krylov-EETD non-adaptive
ETD-RDP second-order central

(d) a = 100

Figure 18. Runtime comparison of ETD-RDP-IF with central difference discretization
and Krylov-EETD for the Brusselator ADR model (34). Note that where no values for
Krylov-EETD are shown, computation time was infeasible or errors were exceedingly
large.

109

non-adaptive implementation of Krylov-EETD in spite of the remaining adaptivity in

expv. The non-adaptive Krylov-EETD scheme is consistently faster than ETD-RDP-IF

wherever solutions were obtained. Due to the lower errors, it is therefore more

efficient for a ≤ 20. However, it is unreliable for a ≥ 20.

For a ≤ 1, the adaptive implementation of Krylov-EETD exhibits the lowest

runtimes and is therefore most efficient. For a ≥ 2, in contrast, we canceled most of

the computations due to suspected excessive runtimes. For a = 100, multiple

computations with different grid sizes finished. However, notably, they showed long

runtimes and large errors as shown above. Therefore, we consider this scheme to be

unreliable for a ≥ 2.

110

4 Conclusion and Future Work

We have described the derivation of the ETD-RDP-IF scheme originally

developed in Asante-Asamani (2016) and Asante-Asamani et al. (2020), and

extended the derivation and implementation to allow for an advection term. We

discretized the advection term in space using a finite difference scheme in order to

treat it linearly, like the diffusion, and showed that the derivation of the scheme still

holds in this case. Considering the ODE that arises from such a spatial

semi-discretization of the ADR system, we showed that the time stepping scheme of

ETD-RDP-IF is second-order accurate also for the case of non-regular discretization

matrices (system matrices of the ODE).

Numerically, we verified the second-order convergence in time for a linear

benchmark problem with smooth initial conditions. We observed an order reduction

for non-smooth initial conditions. We observed that the runtime increase introduced

by upwind-biased schemes due to larger stencils is limited and the efficiency (error

over runtime) is better for for upwind-biased schemes than for the central differencing

scheme, in particular for strong advection.

A comparison to the Krylov-EETD scheme showed that, for low advection

velocities, Krylov-EETD gives the same or smaller errors while exhibiting better

computational performance. However, for large values of a, the computational

performance and reliability of Krylov-EETD decrease, making ETD-RDP-IF the better

choice. For ETD-RDP-IF, we did not observe any instabilities as a increased. This

can most likely be attributed to the L-stability of the scheme (Asante-Asamani 2016).

111

We conclude from this that the choice of scheme depends on the parameters

of the problem, especially the strength of advection. In a parameter regime where

Krylov-EETD has been shown to work well, it is more efficient. Outside of these

regimes, however, ETD-RDP-IF is more reliable in producing useful results.

There are numerous aspects that warrant further research. Considering

accuracy for the time-stepping scheme alone as if it were applied to an ODE is not

sufficient to show its convergence behavior for solving PDEs. For PDEs,

simultaneous convergence in space and time needs to be considered. This can be

done by considering the spatial discretization matrix as a more general linear

operator. This includes the limit of the discretization matrix as h → 0. The

corresponding exponential can then be investigated in the framework of strongly

continuous semigroups. Asante-Asamani (2016) proved second-order accuracy

using this framework. However, he assumes that the operator is invertible, and all

values in the spectrum have a strictly positive real part. In the case of, e. g.,

Neumann or periodic boundary conditions, this assumption is violated, the operators

are not invertible. We, therefore, loosened the assumption, allowing for positive

semi-definite matrices. However, we only allow for matrices of finite and fixed

dimension. The next step is to investigate whether a similar proof as in

Asante-Asamani (2016) can be achieved for semi-definite operators.

Furthermore, we considered the advection — after spatial semi-discretization

— with the linear part of the arising ODE by adding the discretization matrix of the

advection to that of the diffusion. Therefore, the advection is treated implicitly in our

final scheme. As mentioned by Ascher et al. (1995), the advection term is usually

112

non-stiff or mildly stiff, so it is generally solved explicitly. In our case, this would mean

adding the advection to the reaction function instead of the diffusion matrix. This

warrants further investigation with respect to performance and accuracy.

Furthermore, this would enable the consideration of non-linear advection terms, e. g.,

where the advection velocity depends on the concentration of the species.

If advection dominates significantly, as Shampine (1994) notes, the ODE

becomes non-stiff. Then, treatment using a fully explicit scheme might be

advantageous compared to an ETD scheme.

The runtime performance of the scheme is greatly influenced by the way

advection is treated. Considering central differences, the optimizations given by

Asante-Asamani et al. (2020) can all be applied since the band structure of the

discretization matrix does not change. However, the upwind schemes exhibit a

different band structure, therefore preventing some optimizations from being applied.

In this work, we only considered non-optimized solvers that do not show these

potential differences, in an effort to remain general and produce general

implementations. It remains to be investigated how much performance can be gained

by optimized solving of the linear systems, and if this outweighs the benefits

introduced by upwind schemes.

Besides that, we only considered central differences for the Krylov-ETD

scheme. Since the Krylov-subspace approximation does not rely on the band

structure of the matrix, the performance penalty of upwind differencing schemes is

expected to be small. The potentially higher accuracy might improve the reliability of

Krylov-ETD as well. Such a comparison remains to be performed.

113

Lastly, increasing the Krylov-subspace dimension could yield improvements in

reliability of Krylov-EETD.

114

Bibliography

Akrivis, G., Crouzeix, M., and Makridakis, C. (1999), “Implicit-explicit multistep
methods for quasilinear parabolic equations,” Numerische Mathematik 82.4,
pp. 521–541. DOI: 10.1007/s002110050429.

Asante-Asamani, E. O. (2016), “An Exponential Time Differencing Scheme with a
Real Distinct Poles Rational Function for Advection-Diffusion Reaction
Equations,” Doctoral Dissertation, Milwaukee, WI: University of Wisconsin -
Milwaukee.

Asante-Asamani, E. O., Khaliq, A. Q. M., and Wade, B. A. (2016), “A real distinct
poles Exponential Time Differencing scheme for reactiondiffusion systems,”
Journal of Computational and Applied Mathematics 299, pp. 24–34.
DOI: 10.1016/j.cam.2015.09.017.

Asante-Asamani, E. O., Kleefeld, A., and Wade, B. A. (2020), “A second-order
exponential time differencing scheme for non-linear reaction-diffusion systems
with dimensional splitting,” Journal of Computational Physics 415, p. 109490.
DOI: 10.1016/j.jcp.2020.109490.

Ascher, U. M., Ruuth, S. J., and Wetton, B. T. R. (1995), “Implicit-Explicit Methods for
Time-Dependent Partial Differential Equations,” SIAM Journal on Numerical
Analysis 32.3, pp. 797–823. DOI: 10.1137/0732037.

Berestycki, H. (2002), “The Influence of Advection on the Propagation of Fronts in
Reaction-Diffusion Equations”. Nonlinear PDEs in Condensed Matter and
Reactive Flows. Ed. by H. Berestycki and Y. Pomeau. NATO Science Series.
Dordrecht: Springer Netherlands, pp. 11–48.
DOI: 10.1007/978-94-010-0307-0_2.

Bhatt, H. P. and Khaliq, A. Q. M. (2015), “The locally extrapolated exponential time
differencing LOD scheme for multidimensional reactiondiffusion systems,”
Journal of Computational and Applied Mathematics 285, pp. 256–278.
DOI: 10.1016/j.cam.2015.02.017.

Bhatt, H. P., Khaliq, A. Q. M., and Wade, B. A. (2018), “Efficient Krylov-based
exponential time differencing method in application to 3D
advection-diffusion-reaction systems,” Applied Mathematics and Computation
338, pp. 260–273. DOI: 10.1016/j.amc.2018.06.025.

Chapwanya, M., Lubuma, J. M.-S., and Mickens, R. E. (2013), “Nonstandard finite
difference schemes for MichaelisMenten type reaction-diffusion equations,”

115

http://dx.doi.org/10.1007/s002110050429
http://dx.doi.org/10.1016/j.cam.2015.09.017
http://dx.doi.org/10.1016/j.jcp.2020.109490
http://dx.doi.org/10.1137/0732037
http://dx.doi.org/10.1007/978-94-010-0307-0_2
http://dx.doi.org/10.1016/j.cam.2015.02.017
http://dx.doi.org/10.1016/j.amc.2018.06.025

Numerical Methods for Partial Differential Equations 29.1, pp. 337–360.
DOI: 10.1002/num.21733.

Chen, L. Q. and Shen, J. (1998), “Applications of semi-implicit Fourier-spectral
method to phase field equations,” Computer Physics Communications 108.2,
pp. 147–158. DOI: 10.1016/S0010-4655(97)00115-X.

Courant, R., Friedrichs, K., and Lewy, H. (1928), “Über die partiellen
Differenzengleichungen der mathematischen Physik,” Mathematische Annalen
100.1, pp. 32–74.

Courant, R., Friedrichs, K., and Lewy, H. (1967), “On the Partial Difference Equations
of Mathematical Physics,” IBM Journal of Research and Development 11.2,
pp. 215–234. DOI: 10.1147/rd.112.0215.

Cox, S. M. and Matthews, P. C. (2002), “Exponential Time Differencing for Stiff
Systems,” Journal of Computational Physics 176.2, pp. 430–455.
DOI: 10.1006/jcph.2002.6995.

Evans, L. (2010), Partial Differential Equations (2nd ed.) Vol. 19. Graduate Studies in
Mathematics. ISSN: 1065-7339. Providence, RI: American Mathematical
Society. DOI: 10.1090/gsm/019.

Fernandes, R. I. and Fairweather, G. (2012), “An ADI extrapolated Crank-Nicolson
orthogonal spline collocation method for nonlinear reaction-diffusion systems,”
Journal of Computational Physics 231.19, pp. 6248–6267.
DOI: 10.1016/j.jcp.2012.04.001.

Fromm, J. E. (1968), “A method for reducing dispersion in convective difference
schemes,” Journal of Computational Physics 3.2, pp. 176–189.
DOI: 10.1016/0021-9991(68)90015-6.

Gear, C. W. and Kevrekidis, I. G. (2003), “Projective Methods for Stiff Differential
Equations: Problems with Gaps in Their Eigenvalue Spectrum,” SIAM Journal
on Scientific Computing 24.4, pp. 1091–1106.
DOI: 10.1137/S1064827501388157.

Gommes, C. J. and Tharakan, J. (2020), “The Péclet number of a casino: Diffusion
and convection in a gambling context,” American Journal of Physics 88.6,
pp. 439–447. DOI: 10.1119/10.0000957.

Hartman, P. (2002), Ordinary Differential Equations (2nd ed.) Classics in Applied
Mathematics. Philadelphia, PA: Society for Industrial and Applied
Mathematics. DOI: 10.1137/1.9780898719222.

116

http://dx.doi.org/10.1002/num.21733
http://dx.doi.org/10.1016/S0010-4655(97)00115-X
http://dx.doi.org/10.1147/rd.112.0215
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1090/gsm/019
http://dx.doi.org/10.1016/j.jcp.2012.04.001
http://dx.doi.org/10.1016/0021-9991(68)90015-6
http://dx.doi.org/10.1137/S1064827501388157
http://dx.doi.org/10.1119/10.0000957
http://dx.doi.org/10.1137/1.9780898719222

van Herwaarden, O. A. (1994), “Spread of Pollution by Dispersive Groundwater Flow,”
SIAM Journal on Applied Mathematics 54.1, pp. 26–41.
DOI: 10.1137/S0036139992227047.

Higham, N. J. (2005), “The Scaling and Squaring Method for the Matrix Exponential
Revisited,” SIAM Journal on Matrix Analysis and Applications 26.4,
pp. 1179–1193. DOI: 10.1137/04061101X.

Higham, N. J. (2008), Functions of Matrices, Other Titles in Applied Mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics.
DOI: 10.1137/1.9780898717778.

Hochbruck, M. and Ostermann, A. (2005), “Explicit Exponential Runge–Kutta
Methods for Semilinear Parabolic Problems,” SIAM Journal on Numerical
Analysis 43.3, pp. 1069–1090. DOI: 10.1137/040611434.

Horn, R. A. and Johnson, C. R. (1991), Topics in Matrix Analysis, Cambridge:
Cambridge University Press. DOI: 10.1017/CBO9780511840371.

Hundsdorfer, W. and Verwer, J. (2003), Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations,

James, I. D. (2002), “Modelling pollution dispersion, the ecosystem and water quality
in coastal waters: a review,” Environmental Modelling & Software 17.4,
pp. 363–385. DOI: 10.1016/S1364-8152(01)00080-9.

Johnson, K. A. and Goody, R. S. (2011), “The Original Michaelis Constant:
Translation of the 1913 Michaelis-Menten Paper,” Biochemistry 50.39,
pp. 8264–8269. DOI: 10.1021/bi201284u.

Kang, H. and Pesin, Y. (2005), “Dynamics of a discrete Brusselator model: escape to
infinity and Julia set,” Milan Journal of Mathematics 73.1, pp. 1–17.
DOI: 10.1007/s00032-005-0036-y.

Kassam, A.-K. and Trefethen, L. N. (2005), “Fourth-Order Time-Stepping for Stiff
PDEs,” SIAM Journal on Scientific Computing 26.4, pp. 1214–1233.
DOI: 10.1137/S1064827502410633.

Khaliq, A. Q. M., Martín-Vaquero, J., Wade, B. A., and Yousuf, M. (2009), “Smoothing
schemes for reaction-diffusion systems with nonsmooth data,” Journal of
Computational and Applied Mathematics 223.1, pp. 374–386.
DOI: 10.1016/j.cam.2008.01.017.

Kleefeld, B., Khaliq, A. Q. M., and Wade, B. A. (2012), “An ETD Crank-Nicolson
method for reaction-diffusion systems,” Numerical Methods for Partial

117

http://dx.doi.org/10.1137/S0036139992227047
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1137/040611434
http://dx.doi.org/10.1017/CBO9780511840371
http://dx.doi.org/10.1016/S1364-8152(01)00080-9
http://dx.doi.org/10.1021/bi201284u
http://dx.doi.org/10.1007/s00032-005-0036-y
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1016/j.cam.2008.01.017

Differential Equations 28.4, pp. 1309–1335.
DOI: https://doi.org/10.1002/num.20682.

Lanser, D. and Verwer, J. G. (1999), “Analysis of operator splitting for
advection-diffusion-reaction problems from air pollution modelling,” Journal of
Computational and Applied Mathematics 111.1, pp. 201–216.
DOI: 10.1016/S0377-0427(99)00143-0.

LeVeque, R. (2007), Finite difference methods for ordinary and partial differential
equations - steady-state and time-dependent problems, Other Titles in Applied
Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics.

Madzvamuse, A. (2006), “Time-stepping schemes for moving grid finite elements
applied to reactiondiffusion systems on fixed and growing domains,” Journal of
Computational Physics 214.1, pp. 239–263.
DOI: 10.1016/j.jcp.2005.09.012.

Mickens, R. E. (2005), “A nonstandard finite difference scheme for a PDE modeling
combustion with nonlinear advection and diffusion,” Mathematics and
Computers in Simulation 69.5, pp. 439–446.
DOI: 10.1016/j.matcom.2005.03.008.

Al-Mohy, A. H. and Higham, N. J. (2010), “A New Scaling and Squaring Algorithm for
the Matrix Exponential,” SIAM Journal on Matrix Analysis and Applications
31.3, pp. 970–989. DOI: 10.1137/09074721X.

Moler, C. and Van Loan, C. (2003), “Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-Five Years Later,” SIAM Review 45.1,
pp. 3–49. DOI: 10.1137/S00361445024180.

Saad, Y. (2011), Numerical Methods for Large Eigenvalue Problems, Classics in
Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied
Mathematics. DOI: 10.1137/1.9781611970739.

Schnakenberg, J. (1979), “Simple chemical reaction systems with limit cycle
behaviour,” Journal of Theoretical Biology 81.3, pp. 389–400.
DOI: 10.1016/0022-5193(79)90042-0.

Shampine, L. F. (1994), “ODE solvers and the method of lines,” Numerical Methods
for Partial Differential Equations 10.6, pp. 739–755.
DOI: 10.1002/num.1690100608.

Sidje, R. B. (1998), “Expokit: a software package for computing matrix exponentials,”
ACM Transactions on Mathematical Software 24.1, pp. 130–156.
DOI: 10.1145/285861.285868.

118

http://dx.doi.org/https://doi.org/10.1002/num.20682
http://dx.doi.org/10.1016/S0377-0427(99)00143-0
http://dx.doi.org/10.1016/j.jcp.2005.09.012
http://dx.doi.org/10.1016/j.matcom.2005.03.008
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1016/0022-5193(79)90042-0
http://dx.doi.org/10.1002/num.1690100608
http://dx.doi.org/10.1145/285861.285868

Strikwerda, J. C. (2004), Finite Difference Schemes and Partial Differential Equations
(2nd ed.) Other Titles in Applied Mathematics. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Turing, A. M. (1952), “The chemical basis of morphogenesis,” Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences
237.641, pp. 37–72. DOI: 10.1098/rstb.1952.0012.

Tyson, J. J. (1976), The Belousov-Zhabotinskii Reaction, Lecture Notes in
Biomathematics. Berlin, Heidelberg: Springer-Verlag.

Tyson, R., Lubkin, S. R., and Murray, J. D. (1999), “Model and analysis of chemotactic
bacterial patterns in a liquid medium,” Journal of Mathematical Biology 38.4,
pp. 359–375. DOI: 10.1007/s002850050153.

Van Loan, C. F. (2000), “The ubiquitous Kronecker product,” Journal of Computational
and Applied Mathematics 123.1, pp. 85–100.
DOI: 10.1016/S0377-0427(00)00393-9.

Versteeg, H. and Malalasekera, W. (2007), An Introduction to Computational Fluid
Dynamics: The Finite Volume Method (2nd ed.) Harlow: Pearson Education
Limited.

Verwer, J. G., Hundsdorfer, W. H., and Blom, J. G. (2002), “Numerical Time
Integration for Air Pollution Models,” Surveys on Mathematics for Industry 10,
pp. 107–174.

Voss, D. A. and Khaliq, A. Q. M. (1996), “Time-stepping algorithms for
semidiscretized linear parabolic PDEs based on rational approximants with
distinct real poles,” Advances in Computational Mathematics 6.1, pp. 353–363.
DOI: 10.1007/BF02127713.

Voss, D. A. and Khaliq, A. Q. M. (1999), “A linearly implicit predictor-corrector method
for reaction-diffusion equations,” Computers & Mathematics with Applications
38.11, pp. 207–216. DOI: 10.1016/S0898-1221(99)00299-0.

Weissler, F. B. (1979), “Semilinear evolution equations in Banach spaces,” Journal of
Functional Analysis 32.3, pp. 277–296. DOI: 10.1016/0022-1236(79)90040-5.

Yousuf, M., Khaliq, A. Q., and Kleefeld, B. (2012), “The numerical approximation of
nonlinear Black-Scholes model for exotic path-dependent American options
with transaction cost,” International Journal of Computer Mathematics 89.9,
pp. 1239–1254. DOI: 10.1080/00207160.2012.688115.

119

http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1007/s002850050153
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://dx.doi.org/10.1007/BF02127713
http://dx.doi.org/10.1016/S0898-1221(99)00299-0
http://dx.doi.org/10.1016/0022-1236(79)90040-5
http://dx.doi.org/10.1080/00207160.2012.688115

Zheng, S. (2004), Nonlinear Evolution Equations, New York, NY: Chapman and
Hall/CRC. DOI: 10.1201/9780203492222.

120

http://dx.doi.org/10.1201/9780203492222

Biographical Sketch

Björn Müller was born in Würzburg on December 17, 1998. He graduated

from FH Aachen University of Applied Sciences in 2020 with a Bachelor of Science

degree in Scientific Programming. In 2020, he began his graduate studies in pursuit

of a Master of Science degree in Applied Mathematics and Informatics at FH Aachen

University of Applied Sciences before joining the University of Louisiana at Lafayette

in the Fall of 2021. He graduated in the Fall of 2022 from the University of Louisiana

at Lafayette with a Master of Science degree in Mathematics.

121

	Signatures
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviation
	1 — Introduction
	Applications of Advection-Diffusion-Reaction Equations
	Problem Statement
	Significant Advection
	ETD Methods

	2 — Methods
	Mathematical Background
	Finite Difference Spatial Discretization of Advection-Diffusion-Reaction Systems
	Derivation
	Boundary Conditions
	Upwind-Biased Schemes
	Generalization to Arbitrary Dimensions and Species

	Properties of the Matrix Exponential

	ETD-RDP-IF
	Dimensional Splitting
	Discretization in Time
	Approximating the Matrix Exponential
	Accuracy
	Partial Fraction Decomposition
	Unwinding the Dimensional Splitting
	Accuracy of the Final Scheme
	Numerical Implementation

	Krylov-EETD

	3 — Numerical Experiments
	Quantities Concerning Advection
	Cell Péclet Number
	CFL Condition

	Pure Advection Equation
	Wave-Packet Initial Condition
	Boxcar Initial Condition

	Benchmark Example with Known Exact Solution
	Schnakenberg Problem
	Brusselator ADR Model

	4 — Conclusion and Future Work
	Bibliography
	Biographical Sketch

