001     1005460
005     20230929112519.0
024 7 _ |a 10.1002/aelm.202201083
|2 doi
024 7 _ |a 2128/34425
|2 Handle
024 7 _ |a WOS:000940681400001
|2 WOS
037 _ _ |a FZJ-2023-01489
082 _ _ |a 621.3
100 1 _ |a Fomin, Mykola
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Graphene‐on‐Silicon Hybrid Field‐Effect Transistors
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685017557_28274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The combination of graphene and silicon in hybrid electronic devices has attracted increasing attention over the last decade. Here, we present a unique technology of graphene-on-silicon heterostructures as solution-gated transistors for bioelectronics applications. The proposed graphene-on-silicon field-effect transistors (GoSFETs) are fabricated by exploiting various conformations of channel doping and dimensions. The fabricated devices demonstrate hybrid behavior with features specific to both graphene and silicon, which are rationalized via a comprehensive physics-based compact model which is purposely implemented experimentally and proven theoretically. The developed theory corroborates that the device hybrid behavior can be explained in terms of two independent silicon and graphene carrier transport channels, which are, however, strongly electrostatically coupled. Although GoSFET transconductance and carrier mobility are found to be lower than in conventional silicon or graphene field-effect transistors, we observe that the combination of both materials within the hybrid channel contributes uniquely to the electrical response. Specifically, we find that the graphene sheet acts as a shield for the silicon channel, giving rise to a non-uniform potential distribution along it, which impacts the transport, especially at the subthreshold region, due to non-negligible diffusion current.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pasadas, Francisco.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Marin, Enrique G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Medina-Rull, Alberto
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ruiz, Francisco. G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Godoy, Andrés.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zadorozhnyi, Ihor
|0 P:(DE-Juel1)164241
|b 6
700 1 _ |a Beltramo, Guillermo
|0 P:(DE-Juel1)128800
|b 7
700 1 _ |a Brings, Fabian
|0 P:(DE-Juel1)161443
|b 8
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 9
|e Corresponding author
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 10
700 1 _ |a Kireev, Dmitry
|0 P:(DE-Juel1)159559
|b 11
773 _ _ |a 10.1002/aelm.202201083
|g p. 2201083 -
|0 PERI:(DE-600)2810904-1
|n 5
|p 2201083
|t Advanced electronic materials
|v 9
|y 2023
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/1005460/files/Adv%20Elect%20Materials%20-%202023%20-%20Fomin%20-%20Graphene%E2%80%90on%E2%80%90Silicon%20Hybrid%20Field%E2%80%90Effect%20Transistors-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005460
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128800
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128738
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-24T07:52:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-2-20200312
|k IBI-2
|l Mechanobiologie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a I:(DE-Juel1)IBI-2-20200312
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21