001     1005494
005     20240712113130.0
024 7 _ |a 10.1002/jbm.a.37533
|2 doi
024 7 _ |a 0021-9304
|2 ISSN
024 7 _ |a 1549-3296
|2 ISSN
024 7 _ |a 1552-4965
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01500
|2 datacite_doi
024 7 _ |a 36924189
|2 pmid
024 7 _ |a WOS:000952514900001
|2 WOS
037 _ _ |a FZJ-2023-01500
082 _ _ |a 570
100 1 _ |a Parlak, Zümray Vuslat
|0 0000-0003-0691-9184
|b 0
|e Corresponding author
245 _ _ |a Unveiling the main factors triggering the coagulation at the SiC ‐blood interface
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692946901_30979
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hemocompatibility is the most significant criterion for blood-contacting materials in successful in vivo applications. Prior to the clinical tests, in vitro analyses must be performed on the biomaterial surfaces in accordance with the ISO 10993-4 standards. Designing a bio-functional material requires engineering the surface structure and chemistry, which significantly influence the blood cell activity according to earlier studies. In this study, we elucidate the role of surface terminations and polymorphs of SiC single crystals in the initial stage of the contact coagulation. We present a detailed analysis of phase, roughness, surface potential, wettability, consequently, reveal their effect on cytotoxicity and hemocompatibility by employing live/dead stainings, live cell imaging, ELISA and Micro BCA protein assay. Our results showed that the surface potential and the wettability strongly depend on the crystallographic polymorph as well as the surface termination. We show, for the first time, the key role of SiC surface termination on platelet activation. This dependency is in good agreement with the results of our in vitro analysis and points out the prominence of cellular anisotropy. We anticipate that our experimental findings bridge the surface properties to the cellular activities, and therefore, pave the way for tailoring advanced hemocompatible surfaces.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Labude-Weber, Norina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Neuhaus, Kerstin
|0 P:(DE-Juel1)181017
|b 2
700 1 _ |a Schmidt, Christina
|0 P:(DE-Juel1)185885
|b 3
700 1 _ |a Morgan, Aaron David
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zybała, Rafał
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gonzalez-Julian, Jesus
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neuss, Sabine
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schickle, Karolina
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1002/jbm.a.37533
|g p. jbm.a.37533
|0 PERI:(DE-600)1477192-5
|n 9
|p 1322-1332
|t Journal of biomedical materials research / A
|v 111
|y 2023
|x 0021-9304
856 4 _ |u https://juser.fz-juelich.de/record/1005494/files/J%20Biomedical%20Materials%20Res%20-%202023%20-%20Parlak.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005494
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0003-0691-9184
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)181017
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185885
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Łukasiewicz Research Network
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Helmholtz-Institut für Biomedizinische Technik
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOMED MATER RES A : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21