001005510 001__ 1005510 001005510 005__ 20240529111717.0 001005510 037__ $$aFZJ-2023-01510 001005510 1001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b0$$ufzj 001005510 1112_ $$aMicro Symposium CANS 2 im Rahmen der ECNS-Konferenz (19. - 23.03.2023)$$cTUM Department of Mechanical Engineering and the new Science Congress Center Munich$$d2023-03-19 - 2023-03-23$$gECNS 2023$$wGermany 001005510 245__ $$aThermal moderator-reflector assembly for HBS 001005510 260__ $$c2023 001005510 3367_ $$033$$2EndNote$$aConference Paper 001005510 3367_ $$2DataCite$$aOther 001005510 3367_ $$2BibTeX$$aINPROCEEDINGS 001005510 3367_ $$2DRIVER$$aconferenceObject 001005510 3367_ $$2ORCID$$aLECTURE_SPEECH 001005510 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1679317150_7765$$xInvited 001005510 520__ $$aThe thermal moderator is the key component in a research neutron source to convert the primary neutrons which typically haveenergies in the MeV regime into useful neutrons for investigations that shall have energies well below 1 eV. In the case of aHiCANS as HBS, the thermal moderator has to be optimized according to the compact target size and to the proton pulse lengthsat the different target stations. Extraction channels in the thermal moderator are used to either place cold sources feedinginstruments that need a cold neutron spectrum or to extract thermal neutron beams from the volume of highest thermal neutronflux density. Requirements of restricted space, neutron transparency of the main structural materials, the technically demandingflowing liquid thermal moderator material, the complex nature of intense thermal and induced mechanical loading,industry-standard requirements for operational safety, etc. impose important boundary conditions on the design of the thermalmoderator. Here, we present the details of a thermal moderator design serving up to 12 instruments at a target station operated at96 Hz. The thermal moderator consists of a combined welded complex-profiled Al vessel containing 12 thin-walled cast extractionchannels arranged in 2 levels. The vessel is filled with H2O as moderator material which is pumped for cooling purposes. Theentire system is surrounded by a lead reflector and arranged on top of the compact Ta target. We show the results of simulationsconcerning the neutronics and the thermal behaviour of this thermal moderator-reflector assembly. This work is part of thecollaboration within ELENA and LENS on the development of HiCANS. 001005510 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 001005510 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 001005510 909CO $$ooai:juser.fz-juelich.de:1005510$$pVDB 001005510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b0$$kFZJ 001005510 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 001005510 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 001005510 9141_ $$y2023 001005510 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0 001005510 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1 001005510 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x2 001005510 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3 001005510 980__ $$aconf 001005510 980__ $$aVDB 001005510 980__ $$aI:(DE-Juel1)JCNS-2-20110106 001005510 980__ $$aI:(DE-Juel1)PGI-4-20110106 001005510 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709 001005510 980__ $$aI:(DE-82)080009_20140620 001005510 980__ $$aUNRESTRICTED 001005510 981__ $$aI:(DE-Juel1)JCNS-2-20110106