001     1005510
005     20240529111717.0
037 _ _ |a FZJ-2023-01510
100 1 _ |a Rücker, Ulrich
|0 P:(DE-Juel1)130928
|b 0
|u fzj
111 2 _ |a Micro Symposium CANS 2 im Rahmen der ECNS-Konferenz (19. - 23.03.2023)
|g ECNS 2023
|c TUM Department of Mechanical Engineering and the new Science Congress Center Munich
|d 2023-03-19 - 2023-03-23
|w Germany
245 _ _ |a Thermal moderator-reflector assembly for HBS
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1679317150_7765
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The thermal moderator is the key component in a research neutron source to convert the primary neutrons which typically haveenergies in the MeV regime into useful neutrons for investigations that shall have energies well below 1 eV. In the case of aHiCANS as HBS, the thermal moderator has to be optimized according to the compact target size and to the proton pulse lengthsat the different target stations. Extraction channels in the thermal moderator are used to either place cold sources feedinginstruments that need a cold neutron spectrum or to extract thermal neutron beams from the volume of highest thermal neutronflux density. Requirements of restricted space, neutron transparency of the main structural materials, the technically demandingflowing liquid thermal moderator material, the complex nature of intense thermal and induced mechanical loading,industry-standard requirements for operational safety, etc. impose important boundary conditions on the design of the thermalmoderator. Here, we present the details of a thermal moderator design serving up to 12 instruments at a target station operated at96 Hz. The thermal moderator consists of a combined welded complex-profiled Al vessel containing 12 thin-walled cast extractionchannels arranged in 2 levels. The vessel is filled with H2O as moderator material which is pumped for cooling purposes. Theentire system is surrounded by a lead reflector and arranged on top of the compact Ta target. We show the results of simulationsconcerning the neutronics and the thermal behaviour of this thermal moderator-reflector assembly. This work is part of thecollaboration within ELENA and LENS on the development of HiCANS.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
909 C O |o oai:juser.fz-juelich.de:1005510
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130928
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21