Poster (Invited) FZJ-2023-01513

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Automated grouping of spatially distributed detectors in neutron time-of-flight experiments based on multivariate similarity

 ;  ;

2023

Eighth European Conference on Neutron Scattering, ECNS 2023, TUM Department of Mechanical Engineering and the new Science Congress Center MunichTUM Department of Mechanical Engineering and the new Science Congress Center Munich, Germany, 19 Mar 2023 - 23 Mar 20232023-03-192023-03-23

Abstract: Nowadays, in neutron time of flight measurements, there are experimental setups in which many detectors record data during a single experiment. It is usually desirable to be able to sum several spectra in order to increase counting statistics, and therefore decrease uncertainties, for further analysis. A problem arises in time-of-flight experiments when the available spectra are acquired with a set of spatially distributed detectors, each forming a different source-sample-detector angle and at different sample-detector distances. Since these spectra record the neutron’s time of flight after scattering, and the neutron scattering depends on the Q vector, then these spectra are not arbitrarily summable. In this work, we propose an automated methodology for wisely adding spectra based on their multivariate similarity by means of machine learning techniques, such as k nearest neighbors combined with T-distributed Stochastic Neighbor Embedding (t-SNE). We exemplify it in the effective temperature determination of hydrogen in ethane and triphenylmethane samples by means of Deep Inelastic Neutron Scattering, measured at the VESUVIO spectrometer (ISIS facility, UK). The proposed methodology can be applied in other time-of-flight experiments, in which detectors located at different angles record complete spectra, and with this method their degree of compatibility can be determined.


Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)

Appears in the scientific report 2023
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Document types > Presentations > Poster
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database

 Record created 2023-03-20, last modified 2024-05-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)