001005537 001__ 1005537
001005537 005__ 20240712084534.0
001005537 0247_ $$2doi$$a10.1109/JPHOTOV.2023.3240680
001005537 0247_ $$2ISSN$$a2156-3381
001005537 0247_ $$2ISSN$$a2156-3403
001005537 0247_ $$2WOS$$aWOS:000936283700001
001005537 037__ $$aFZJ-2023-01527
001005537 041__ $$aEnglish
001005537 082__ $$a530
001005537 1001_ $$0P:(DE-Juel1)176866$$aVaas, Timon Sebastian$$b0
001005537 245__ $$aThermal Stimulation of Reverse Breakdown in CIGS Solar Cells
001005537 260__ $$aNew York, NY$$bIEEE$$c2023
001005537 3367_ $$2DRIVER$$aarticle
001005537 3367_ $$2DataCite$$aOutput Types/Journal article
001005537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690882585_29103
001005537 3367_ $$2BibTeX$$aARTICLE
001005537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005537 3367_ $$00$$2EndNote$$aJournal Article
001005537 520__ $$aThe underlying mechanisms of the initial stages of hot-spot and therefore defect creation due to reverse breakdown in Cu(In,Ga)S e2 solar cells are not well understood. We test the thesis, that permanent damage is created due to a positive feedback loop of local temperature enhancing the local current and vice versa, resulting in a thermal runaway. We present experiments on reverse stress with simultaneously introducing local heat. Depending on the temperature profile of the introduced heat, the local current density is enhanced and leads to a gain in the local temperature. This feedback loop is shown to lead to reverse breakdown, causing permanent damage.
001005537 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001005537 536__ $$0G:(DE-HGF)LLEC-2018-2023$$aLLEC - Living Lab Energy Campus (LLEC-2018-2023)$$cLLEC-2018-2023$$x1
001005537 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005537 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001005537 7001_ $$0P:(DE-Juel1)130284$$aPieters, Bart Elger$$b1$$ufzj
001005537 7001_ $$0P:(DE-Juel1)130241$$aGerber, Andreas$$b2
001005537 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$ufzj
001005537 773__ $$0PERI:(DE-600)2585714-9$$a10.1109/JPHOTOV.2023.3240680$$gp. 1 - 6$$n3$$p1 - 6$$tIEEE journal of photovoltaics$$v13$$x2156-3381$$y2023
001005537 8564_ $$uhttps://ieeexplore.ieee.org/abstract/document/10046200
001005537 8564_ $$uhttps://juser.fz-juelich.de/record/1005537/files/Invoice_APC600385690.pdf
001005537 8564_ $$uhttps://juser.fz-juelich.de/record/1005537/files/Thermal_Stimulation_of_Reverse_Breakdown_in_CIGS_Solar_Cells.pdf$$yRestricted
001005537 8767_ $$8APC600385690$$92023-01-27$$a1200190273$$d2023-02-02$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2023-01056; USD 2195,-
001005537 8767_ $$8APC600385690$$92023-01-27$$a1200190273$$d2023-02-02$$eColour charges$$jZahlung erfolgt$$zFZJ-2023-01056; USD 1375,-
001005537 909CO $$ooai:juser.fz-juelich.de:1005537$$popenCost$$pOpenAPC$$pVDB
001005537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176866$$aForschungszentrum Jülich$$b0$$kFZJ
001005537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130284$$aForschungszentrum Jülich$$b1$$kFZJ
001005537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130241$$aForschungszentrum Jülich$$b2$$kFZJ
001005537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b3$$kFZJ
001005537 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001005537 9141_ $$y2023
001005537 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005537 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005537 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005537 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J PHOTOVOLT : 2022$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-19
001005537 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
001005537 920__ $$lyes
001005537 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001005537 9801_ $$aAPC
001005537 980__ $$ajournal
001005537 980__ $$aVDB
001005537 980__ $$aI:(DE-Juel1)IEK-5-20101013
001005537 980__ $$aAPC
001005537 980__ $$aUNRESTRICTED
001005537 981__ $$aI:(DE-Juel1)IMD-3-20101013