Home > Publications database > Elucidating the Mechanism of the Magnetocaloric Effect in Compounds of the Series Mn5-xFexSi3 > print |
001 | 1005571 | ||
005 | 20230414201816.0 | ||
037 | _ | _ | |a FZJ-2023-01533 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Friese, Karen |0 P:(DE-Juel1)145694 |b 0 |e Corresponding author |
111 | 2 | _ | |a Material Research Society Spring Meeting & Exhibit 2023 |g MRS 2023 |c San Francisco |d 2023-04-10 - 2023-04-14 |w USA |
245 | _ | _ | |a Elucidating the Mechanism of the Magnetocaloric Effect in Compounds of the Series Mn5-xFexSi3 |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1681464385_3540 |2 PUB:(DE-HGF) |x Invited |
520 | _ | _ | |a Domestic and industrial refrigeration applications contribute a substantial part to mankind's energy consumption. New technologies based on solid state caloric effects promise considerable efficiency gains as compared to today’s vapor compression technology. In caloric materials, applied fields (e.g. magnetic, electric, pressure, strain) lead to changes in entropy and in the adiabatic temperature. The observed caloric effects form the basis of the caloric refrigeration cycles. Within our research we aim at a better understanding of the relation between the structure and the dynamics of the materials to guide a sustainable material design.We focused our research on the magnetocaloric effect in the family of compounds Mn5-xFexSi3. Within the series the magnetocaloric behavior changes from an inverse MCE below 100 K for the end member Mn5Si3 (x=0) to a moderately high direct MCE close to room temperature for MnFe4Si3 (x=4) [1,2]. We performed macroscopic magnetization measurements in static and pulsed fields which provide a basis to quantify and explain phenomenologically the MCE and to elucidate its anisotropy [3,4]. Crystal structures were investigated using powder and single crystal x-ray and neutron diffraction studies under varying temperatures and pressures [5].Neutron diffraction experiments were of particular importance here as - on one hand - they allow to unambiguously characterize the preferred ordering of Mn and Fe on the two symmetry independent sites available for the paramagnetic ions and thus help elucidating the site dependence of the magnetocaloric effect [6]. On the other hand, they are mandatory for the determination of the magnetic structures in the system [2,6].The underlying spin dynamics of the system was studied by a combination of inelastic neutron scattering and density functional theory calculations [7,8]. The parent compound Mn5Si3 (x=0), undergoes two first order phase transitions to a collinear AFM2 phase (60K |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 2 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 1 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 1 |
693 | _ | _ | |0 EXP:(DE-Juel1)ILL-IN12-20150421 |5 EXP:(DE-Juel1)ILL-IN12-20150421 |e ILL-IN12: Cold neutron 3-axis spectrometer |x 0 |
700 | 1 | _ | |a Schmalzl, Karin |0 P:(DE-Juel1)130943 |b 1 |
700 | 1 | _ | |a Voigt, Jörg |0 P:(DE-Juel1)131018 |b 2 |
700 | 1 | _ | |a Biniskos, Nikolaos |0 P:(DE-Juel1)180764 |b 3 |
700 | 1 | _ | |a Raymond, Stephane |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Grzechnik, Andrzej |0 P:(DE-Juel1)194570 |b 5 |u fzj |
700 | 1 | _ | |a Santos, Flaviano Jose dos |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Brückel, Thomas |0 P:(DE-Juel1)130572 |b 7 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1005571 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145694 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130943 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131018 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180764 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)194570 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130572 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 2 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 4 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 5 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-ILL-20110128 |k JCNS-ILL |l JCNS-ILL |x 6 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 7 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 8 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-ILL-20110128 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|