001005593 001__ 1005593
001005593 005__ 20240712100946.0
001005593 0247_ $$2doi$$a10.5194/acp-23-2251-2023
001005593 0247_ $$2Handle$$a2128/34185
001005593 0247_ $$2WOS$$aWOS:000938012500001
001005593 037__ $$aFZJ-2023-01552
001005593 082__ $$a550
001005593 1001_ $$0P:(DE-Juel1)167407$$aLi, Yun$$b0$$eCorresponding author$$ufzj
001005593 245__ $$aUpper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
001005593 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001005593 3367_ $$2DRIVER$$aarticle
001005593 3367_ $$2DataCite$$aOutput Types/Journal article
001005593 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679556856_9113
001005593 3367_ $$2BibTeX$$aARTICLE
001005593 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005593 3367_ $$00$$2EndNote$$aJournal Article
001005593 520__ $$aMicrophysical, optical, and environmental properties of contrail cirrus and natural cirrus were investigated by applying a new, statistically based contrail-cirrus separation method to 14.7 h of cirrus cloud measurements (sampling frequency 1 Hz, max. similar to 290 m s(-1), total length of sampled in-cloud space similar to 15 000 km) during the airborne campaign ML-CIRRUS in central Europe and the northeast Atlantic flight corridor in spring 2014. We find that pure contrail cirrus appears frequently at the aircraft cruising altitude (CA) range with ambient pressure varying from 200 to 245 hPa. It exhibits a higher median ice particle number concentration (N-ice), a smaller median mass mean radius (R-ice), and lower median ice water content (IWC) (median: Nice=0.045 cm(-3), R-ice=16.6 mu m, IWC = 3.5 ppmv), and it is optically thinner (median extinction coefficient Ext = similar to 0.056 km(-1)) than the cirrus mixture of contrail cirrus, natural in situ-origin and liquid-origin cirrus found around the CA range (median: N-ice=0.038 cm(-3), R-ice=24.1 mu m, IWC = 8.3 ppmv, Ext =similar to 0.096 km(-1)). The lowest and thickest cirrus, consisting of a few large ice particles, are identified as pure natural liquid-origin cirrus (median: N-ice=0.018 cm(-3), R-ice=42.4 mu m, IWC = 21.7 ppmv, Ext = similar to 0.137 km(-1)). Furthermore, we observe that, in particular, contrail cirrus occurs more often in slightly ice-subsaturated instead of merely ice-saturated to supersaturated air as often assumed, thus indicating the possibility of enlarged contrail cirrus existence regions. The enlargement is estimated, based on IAGOS long-term observations of relative humidity with respect to ice (RHice) aboard passenger aircraft, to be approximately 10 % for Europe and the North Atlantic region, with the RHice threshold for contrail cirrus existence decreased from 100 % to 90 % RHice and a 4 h lifetime of contrail cirrus in slight ice subsaturation assumed. This increase may not only lead to a non-negligible change in contrail cirrus coverage and radiative forcing, but also affect the mitigation strategies of reducing contrails by rerouting flights.
001005593 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001005593 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b1$$eCorresponding author$$ufzj
001005593 7001_ $$0P:(DE-Juel1)184748$$aMahnke, Christoph$$b2$$ufzj
001005593 7001_ $$0P:(DE-Juel1)129146$$aRohs, Susanne$$b3$$ufzj
001005593 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b4$$ufzj
001005593 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b5$$ufzj
001005593 7001_ $$0P:(DE-HGF)0$$aDekoutsidis, Georgios$$b6
001005593 7001_ $$0P:(DE-HGF)0$$aGross, Silke$$b7
001005593 7001_ $$0P:(DE-HGF)0$$aVoigt, Christiane$$b8
001005593 7001_ $$0P:(DE-HGF)0$$aSchumann, Ulrich$$b9
001005593 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b10$$ufzj
001005593 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-2251-2023$$n3$$p2251-2271$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001005593 8564_ $$uhttps://juser.fz-juelich.de/record/1005593/files/acp-23-2251-2023.pdf$$yOpenAccess
001005593 8767_ $$d2023-04-20$$eAPC$$jZahlung erfolgt
001005593 909CO $$ooai:juser.fz-juelich.de:1005593$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167407$$aForschungszentrum Jülich$$b0$$kFZJ
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b1$$kFZJ
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184748$$aForschungszentrum Jülich$$b2$$kFZJ
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129146$$aForschungszentrum Jülich$$b3$$kFZJ
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b4$$kFZJ
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b5$$kFZJ
001005593 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b6
001005593 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b7
001005593 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b8
001005593 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b9
001005593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b10$$kFZJ
001005593 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001005593 9141_ $$y2023
001005593 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005593 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005593 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001005593 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001005593 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-19
001005593 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005593 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-19
001005593 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-19
001005593 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005593 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-19
001005593 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001005593 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001005593 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001005593 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001005593 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001005593 920__ $$lyes
001005593 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001005593 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
001005593 9801_ $$aFullTexts
001005593 980__ $$ajournal
001005593 980__ $$aVDB
001005593 980__ $$aUNRESTRICTED
001005593 980__ $$aI:(DE-Juel1)IEK-7-20101013
001005593 980__ $$aI:(DE-Juel1)IEK-8-20101013
001005593 980__ $$aAPC
001005593 981__ $$aI:(DE-Juel1)ICE-4-20101013
001005593 981__ $$aI:(DE-Juel1)ICE-3-20101013
001005593 981__ $$aI:(DE-Juel1)ICE-3-20101013