001     1005593
005     20240712100946.0
024 7 _ |a 10.5194/acp-23-2251-2023
|2 doi
024 7 _ |a 2128/34185
|2 Handle
024 7 _ |a WOS:000938012500001
|2 WOS
037 _ _ |a FZJ-2023-01552
082 _ _ |a 550
100 1 _ |a Li, Yun
|0 P:(DE-Juel1)167407
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
260 _ _ |a Katlenburg-Lindau
|c 2023
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679556856_9113
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microphysical, optical, and environmental properties of contrail cirrus and natural cirrus were investigated by applying a new, statistically based contrail-cirrus separation method to 14.7 h of cirrus cloud measurements (sampling frequency 1 Hz, max. similar to 290 m s(-1), total length of sampled in-cloud space similar to 15 000 km) during the airborne campaign ML-CIRRUS in central Europe and the northeast Atlantic flight corridor in spring 2014. We find that pure contrail cirrus appears frequently at the aircraft cruising altitude (CA) range with ambient pressure varying from 200 to 245 hPa. It exhibits a higher median ice particle number concentration (N-ice), a smaller median mass mean radius (R-ice), and lower median ice water content (IWC) (median: Nice=0.045 cm(-3), R-ice=16.6 mu m, IWC = 3.5 ppmv), and it is optically thinner (median extinction coefficient Ext = similar to 0.056 km(-1)) than the cirrus mixture of contrail cirrus, natural in situ-origin and liquid-origin cirrus found around the CA range (median: N-ice=0.038 cm(-3), R-ice=24.1 mu m, IWC = 8.3 ppmv, Ext =similar to 0.096 km(-1)). The lowest and thickest cirrus, consisting of a few large ice particles, are identified as pure natural liquid-origin cirrus (median: N-ice=0.018 cm(-3), R-ice=42.4 mu m, IWC = 21.7 ppmv, Ext = similar to 0.137 km(-1)). Furthermore, we observe that, in particular, contrail cirrus occurs more often in slightly ice-subsaturated instead of merely ice-saturated to supersaturated air as often assumed, thus indicating the possibility of enlarged contrail cirrus existence regions. The enlargement is estimated, based on IAGOS long-term observations of relative humidity with respect to ice (RHice) aboard passenger aircraft, to be approximately 10 % for Europe and the North Atlantic region, with the RHice threshold for contrail cirrus existence decreased from 100 % to 90 % RHice and a 4 h lifetime of contrail cirrus in slight ice subsaturation assumed. This increase may not only lead to a non-negligible change in contrail cirrus coverage and radiative forcing, but also affect the mitigation strategies of reducing contrails by rerouting flights.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Mahnke, Christoph
|0 P:(DE-Juel1)184748
|b 2
|u fzj
700 1 _ |a Rohs, Susanne
|0 P:(DE-Juel1)129146
|b 3
|u fzj
700 1 _ |a Bundke, Ulrich
|0 P:(DE-Juel1)159541
|b 4
|u fzj
700 1 _ |a Spelten, Nicole
|0 P:(DE-Juel1)129155
|b 5
|u fzj
700 1 _ |a Dekoutsidis, Georgios
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gross, Silke
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Voigt, Christiane
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schumann, Ulrich
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Petzold, Andreas
|0 P:(DE-Juel1)136669
|b 10
|u fzj
773 _ _ |a 10.5194/acp-23-2251-2023
|0 PERI:(DE-600)2069847-1
|n 3
|p 2251-2271
|t Atmospheric chemistry and physics
|v 23
|y 2023
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/1005593/files/acp-23-2251-2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005593
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184748
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129155
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)136669
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21