001005616 001__ 1005616
001005616 005__ 20231116095322.0
001005616 0247_ $$2doi$$a10.1103/PhysRevA.107.042422
001005616 0247_ $$2ISSN$$a2469-9926
001005616 0247_ $$2ISSN$$a2469-9942
001005616 0247_ $$2ISSN$$a2469-9934
001005616 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01565
001005616 0247_ $$2WOS$$aWOS:000976385800005
001005616 037__ $$aFZJ-2023-01565
001005616 082__ $$a530
001005616 1001_ $$0P:(DE-Juel1)184903$$aHeußen, Sascha$$b0$$eCorresponding author
001005616 245__ $$aStrategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers
001005616 260__ $$aWoodbury, NY$$bInst.$$c2023
001005616 3367_ $$2DRIVER$$aarticle
001005616 3367_ $$2DataCite$$aOutput Types/Journal article
001005616 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697431121_31292
001005616 3367_ $$2BibTeX$$aARTICLE
001005616 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005616 3367_ $$00$$2EndNote$$aJournal Article
001005616 520__ $$aFault-tolerant quantum error correction provides a strategy to protect information processed by aquantum computer against noise which would otherwise corrupt the data. A fault-tolerant universalquantum computer must implement a universal gate set on the logical level in order to perform arbi-trary calculations to in principle unlimited precision. In this manuscript, we characterize the recentdemonstration of a fault-tolerant universal gate set in a trapped-ion quantum computer [Postler etal. Nature 605.7911 (2022)] and identify aspects to improve the design of experimental setups toreach an advantage of logical over physical qubit operation. We show that various criteria to assessthe break-even point for fault-tolerant quantum operations are within reach for the ion trap quan-tum computing architecture under consideration. Furthermore, we analyze the influence of crosstalkin entangling gates for logical state preparation circuits. These circuits can be designed to respectfault tolerance for specific microscopic noise models. We find that an experimentally-informed de-polarizing noise model captures the essential noise dynamics of the fault-tolerant experiment thatwe consider, and crosstalk is negligible in the currently accessible regime of physical error rates. Fordeterministic Pauli state preparation, we provide a fault-tolerant unitary logical qubit initializationcircuit, which can be realized without in-sequence measurement and feed-forward of classical infor-mation. Additionally, we show that non-deterministic state preparation schemes, i.e. repeat untilsuccess, for logical Pauli and magic states perform with higher logical fidelity over their deterministiccounterparts for the current and anticipated future regime of physical error rates. Our results offerguidance on improvements of physical qubit operations and validate the experimentally-informednoise model as a tool to predict logical failure rates in quantum computing architectures based ontrapped ions.
001005616 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001005616 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005616 7001_ $$0P:(DE-HGF)0$$aPostler, Lukas$$b1
001005616 7001_ $$0P:(DE-Juel1)187504$$aRispler, Manuel$$b2$$ufzj
001005616 7001_ $$0P:(DE-HGF)0$$aPogorelov, Ivan$$b3
001005616 7001_ $$0P:(DE-HGF)0$$aMarciniak, Christian D.$$b4
001005616 7001_ $$0P:(DE-HGF)0$$aMonz, Thomas$$b5
001005616 7001_ $$0P:(DE-HGF)0$$aSchindler, Philipp$$b6
001005616 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b7
001005616 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.107.042422$$gVol. 107, no. 4, p. 042422$$n4$$p042422$$tPhysical review / A$$v107$$x2469-9926$$y2023
001005616 8564_ $$uhttps://juser.fz-juelich.de/record/1005616/files/Invoice_INV_23_MAR_010669.pdf
001005616 8564_ $$uhttps://juser.fz-juelich.de/record/1005616/files/PhysRevA.107.042422.pdf$$yOpenAccess
001005616 8767_ $$8INV/23/MAR/010669$$92023-03-24$$a1200191792$$d2023-03-27$$eHybrid-OA$$jZahlung erfolgt$$zUSD 2675,-
001005616 909CO $$ooai:juser.fz-juelich.de:1005616$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184903$$aForschungszentrum Jülich$$b0$$kFZJ
001005616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187504$$aForschungszentrum Jülich$$b2$$kFZJ
001005616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b7$$kFZJ
001005616 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001005616 9141_ $$y2023
001005616 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005616 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005616 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-31
001005616 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-03-31
001005616 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005616 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-31
001005616 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005616 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2022$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001005616 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001005616 920__ $$lyes
001005616 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001005616 980__ $$ajournal
001005616 980__ $$aVDB
001005616 980__ $$aUNRESTRICTED
001005616 980__ $$aI:(DE-Juel1)PGI-2-20110106
001005616 980__ $$aAPC
001005616 9801_ $$aAPC
001005616 9801_ $$aFullTexts