001     1005616
005     20231116095322.0
024 7 _ |a 10.1103/PhysRevA.107.042422
|2 doi
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01565
|2 datacite_doi
024 7 _ |a WOS:000976385800005
|2 WOS
037 _ _ |a FZJ-2023-01565
082 _ _ |a 530
100 1 _ |a Heußen, Sascha
|0 P:(DE-Juel1)184903
|b 0
|e Corresponding author
245 _ _ |a Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697431121_31292
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fault-tolerant quantum error correction provides a strategy to protect information processed by aquantum computer against noise which would otherwise corrupt the data. A fault-tolerant universalquantum computer must implement a universal gate set on the logical level in order to perform arbi-trary calculations to in principle unlimited precision. In this manuscript, we characterize the recentdemonstration of a fault-tolerant universal gate set in a trapped-ion quantum computer [Postler etal. Nature 605.7911 (2022)] and identify aspects to improve the design of experimental setups toreach an advantage of logical over physical qubit operation. We show that various criteria to assessthe break-even point for fault-tolerant quantum operations are within reach for the ion trap quan-tum computing architecture under consideration. Furthermore, we analyze the influence of crosstalkin entangling gates for logical state preparation circuits. These circuits can be designed to respectfault tolerance for specific microscopic noise models. We find that an experimentally-informed de-polarizing noise model captures the essential noise dynamics of the fault-tolerant experiment thatwe consider, and crosstalk is negligible in the currently accessible regime of physical error rates. Fordeterministic Pauli state preparation, we provide a fault-tolerant unitary logical qubit initializationcircuit, which can be realized without in-sequence measurement and feed-forward of classical infor-mation. Additionally, we show that non-deterministic state preparation schemes, i.e. repeat untilsuccess, for logical Pauli and magic states perform with higher logical fidelity over their deterministiccounterparts for the current and anticipated future regime of physical error rates. Our results offerguidance on improvements of physical qubit operations and validate the experimentally-informednoise model as a tool to predict logical failure rates in quantum computing architectures based ontrapped ions.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Postler, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rispler, Manuel
|0 P:(DE-Juel1)187504
|b 2
|u fzj
700 1 _ |a Pogorelov, Ivan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Marciniak, Christian D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Monz, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schindler, Philipp
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 7
773 _ _ |a 10.1103/PhysRevA.107.042422
|g Vol. 107, no. 4, p. 042422
|0 PERI:(DE-600)2844156-4
|n 4
|p 042422
|t Physical review / A
|v 107
|y 2023
|x 2469-9926
856 4 _ |u https://juser.fz-juelich.de/record/1005616/files/Invoice_INV_23_MAR_010669.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005616/files/PhysRevA.107.042422.pdf
909 C O |o oai:juser.fz-juelich.de:1005616
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184903
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187504
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-03-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV A : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21