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Fault-tolerant quantum error correction provides a strategy to protect information processed by a quantum
computer against noise which would otherwise corrupt the data. A fault-tolerant universal quantum computer
must implement a universal gate set on the logical level in order to perform arbitrary calculations to in principle
unlimited precision. In this paper we characterize the recent demonstration of a fault-tolerant universal gate set
in a trapped-ion quantum computer [Postler et al., Nature (London) 605, 7911 (2022)] and identify aspects to
improve the design of experimental setups to reach an advantage of logical over physical qubit operation. We
show that various criteria to assess the break-even point for fault-tolerant quantum operations are within reach
for the ion trap quantum computing architecture under consideration. Furthermore, we analyze the influence of
crosstalk in entangling gates for logical state preparation circuits. These circuits can be designed to respect fault
tolerance for specific microscopic noise models. We find that an experimentally informed depolarizing noise
model captures the essential noise dynamics of the fault-tolerant experiment that we consider, and crosstalk is
negligible in the currently accessible regime of physical error rates. For deterministic Pauli state preparation, we
provide a fault-tolerant unitary logical qubit initialization circuit, which can be realized without in-sequence
measurement and feed-forward of classical information. Additionally, we show that nondeterministic state
preparation schemes, i.e., repeat until success, for logical Pauli and magic states perform with higher logical
fidelity over their deterministic counterparts for the current and anticipated future regime of physical error
rates. Our results offer guidance on improvements of physical qubit operations and validate the experimentally
informed noise model as a tool to predict logical failure rates in quantum computing architectures based on
trapped ions.
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I. INTRODUCTION

The toolbox of quantum fault tolerance provides a key
on the way towards universal quantum computation [1]. By
careful circuit design this allows one to contain the effect of
faults stemming from the fundamentally noisy hardware of
real physical quantum systems. Here the ideal computation
takes place in a subspace (dubbed the logical subspace) of
the (much larger) physical Hilbert space, where the logical
information is typically encoded in nonlocal degrees of free-
dom of a quantum error-correcting (QEC) code and protected
against local noise [2]. Avenues to experimental investigation
of fault-tolerant (FT) design principles have been opened
up by recent leaps in quantum computing experiments and
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the development of the theory of flag fault tolerance, where
dedicated auxiliary qubits flag the presence or absence of
dangerous error patterns [3–7]. In trapped-ion systems, code
state preparation [8], FT error detection [9], FT stabilizer
readout [10], FT operation of one logical qubit [11], as well as
logical entangling gates [12] and repetitive QEC cycles [13]
were achieved. The state of the art now lies in FT universal
gate sets [14] conjoined with repetitive QEC cycles [15]. In
superconducting qubits, this evolution is paralleled, where
code state preparation [16,17], error-detecting QEC cycles
[18], logical gates in an error-detecting code [19], and the
operation of a surface code with QEC cycles [20] and higher-
distance surface codes [21] were demonstrated. Other qubit
platforms are showing greatly increasing capabilities recently
along similar directions [22,23].

Central to the task of FT operation of a quantum processor
are the ability (a) to initialize logical states, i.e., QEC code
states, (b) to measure their error syndrome, (c) to perform
logical gates using a universal set of gates, and (d) to de-
termine logical measurement outcomes. All these tasks have
to be implemented fault tolerantly, i.e., in such a way that
they do not introduce errors beyond what can be tolerated by
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the QEC code. Furthermore the noise level of all operations
needs to be below a (model-dependent) threshold [24,25].
A major concern is the proliferation of errors due to the
application of entangling operations when implementing a
logical gate. A landmark result that emerged from fault tol-
erance theory is that FT logical gate operations typically fall
into two categories. On the one hand, some gate operations
can be relatively straightforward to compose by transversal
implementations, where the logical gate operation can be syn-
thesized by independent bitwise action on the qubit register,
thus avoiding any need for entangling operations within the
logical qubit block. On the other hand, there are always gates
that defy this realization and require special treatment, as
dictated by the no-go theorem of Eastin and Knill [26,27].
For the platform of trapped-ion qubits, the ability to perform
a universal gate set on the logical level has recently become
experimental reality as part of a demonstration by Ref. [14].
In the present work, we provide an extensive analysis to put
this experiment into a broader context of current and projected
experimental capabilities.

II. OUTLINE AND SUMMARY OF MAIN RESULTS

This paper is structured as follows: In Sec. III we discuss
the trapped-ion setup and give an overview over the physics
that provide the basis for defining qubit states as well as
single-qubit and entangling operations. We lay out how this
leads us to an experimentally motivated noise model, building
on and extending the model used in Ref. [14]. Also, we in-
troduce the circuit sampling technique of subset sampling and
discuss how it fares compared to conventional Monte Carlo
sampling. In Sec. IV we discuss one of the key aspects of
FT circuit design, namely, in what scenario and parameter
regime they become useful by outperforming their non-FT
or bare physical counterparts. We discuss which parameters
the logical qubit performance can and should be compared
to and present how FT circuits for logical Pauli eigenstate
preparation as well as logical magic state preparation perform
on those scales. We find in Sec. IV A that under our current
noise levels, the Pauli state preparation is already on the
edge to the break-even point of outperforming the physical
initialization operation. The logical magic state preparation is
already below one of the relevant break-even points, namely
the physical entangling gate error rate with current noise pa-
rameters. By a scaling analysis of the physical error rates, we
find that both will be brought to the subthreshold regime with
moderate hardware improvements. We extend the discussion
in Sec. IV B by comparing nondeterministic circuits, where
runs with flag events are discarded, to deterministic circuits,
where runs with flag events are instead treated with further
circuitry to maintain fault tolerance. We find that the added
circuitry reduces the logical fidelity substantially and discuss
the scenarios where either might be preferential. In Sec. V
we discuss the relevance of crosstalk, where we explain the
notion of entangling crosstalk and the corresponding error
channel. We study its potentially detrimental effect on QEC
under current and projected experimental noise. We find that it
does not constitute a major noise source at current noise levels
but might become relevant at lower error rates. Nevertheless,
we demonstrate how a specific type of entangling crosstalk

can be mitigated by carefully designing the circuit. In Sec. VI
we calculate the quantum state fidelity of a single logical
qubit under different noise models. From the comparison of
different performance metrics we conclude that the logical
fidelity is the appropriate measure and the central figure of
merit used for quantifying the logical qubit performance.

III. TRAPPED-ION-BASED QUANTUM PROCESSORS

One of the most promising system architectures for FT
quantum information processors is trapped-ion-based devices
[28–31]. These devices offer mature hardware, high-fidelity
operations and all-to-all qubit connectivity. For register sizes
of up to around 20 qubits [15,32] any arbitrary pair of qubits
in the register can be natively entangled with a single quantum
operation, facilitating certain quantum algorithms or rather re-
ducing the overhead of their implementation drastically [33].
This is achieved by exploiting a long-range interaction be-
tween the ions mediated by a collective motional mode of the
ion Coulomb crystal. Even larger registers can be realized by
subdividing the register into smaller segments, each providing
all-to-all connectivity [34]. Interactions between such subsec-
tions can be realized by spatially rearranging the segments
and single ions within the segments. Individual ions can be
moved within the device for reconfiguration, an operation
referred to as shuttling, via the application of time-dependent
voltages to electrodes of the ion trap. Fault-tolerant gadgets
have already been demonstrated in setups following this ion-
shuttling-based approach [10,13,15]. For the remainder of this
section we will focus on a system hosting a static ion string
that provides all-to-all connectivity in a register of 16 qubits
[32]. In the following we will discuss the native gate set and
noise processes of the device.

A. Static ion chain quantum processor

The system under consideration uses a macroscopic Paul
trap [32]. A suitable set of radio frequency and static voltages
applied to the trap electrodes ensures that trapped ions form
a one-dimensional crystal, where their equilibrium positions
are determined by the interplay of the trapping forces and
the Coulomb interaction between the ions [35]. Each trapped
40Ca+ ion hosts a qubit in the Zeeman sublevels 4S1/2,mj=−1/2 =
|0〉 and 3D5/2,mj=−1/2 = |1〉 of the ground state and a metastable
excited state with a lifetime of T1 ≈ 1.2s [36]. As can be
seen in Fig. 1, a tightly focused laser beam addressing this
quadrupole transition allows for individual control of the
qubits in the register. The native gate set of the apparatus
consists of the following three types of operations:

Resonant operations. A laser pulse resonant to the qubit
transition with variable phase and pulse area implements ro-
tations R(i)

ϕ (θ ) = exp[−i θ
2 (Xi cos ϕ + Yi sin ϕ)] around an axis

in the equatorial plane of the Bloch sphere, where Xi and Yi

are single-qubit Pauli matrices acting on qubit i. The rotation
angle θ is controlled via the duration and intensity of the
laser pulse, and the angle of the rotation axis with respect
to the X axis ϕ is controlled via the pulse phase. A pulse
length of about 15 µs is required to implement a rotation angle
of π/2.
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FIG. 1. Trapped-ion device architecture and native gate set:
(a) Trapped ions (blue dots) are suspended in a macroscopic linear
Paul trap. Tightly focused laser beams allow for the implementation
of single-qubit rotations (lighter-shaded red laser beam) and entan-
gling operations on arbitrary pairs (darker-shaded beams). (b) The
native gate set consists of resonant single-qubit operations imple-
menting rotations around an axis in the equatorial plane of the Bloch
sphere, where the rotation axis in controlled via the phase ϕ of the
laser pulse. The rotation angle θ is controlled via the pulse area of
the laser pulse. The native entangling operation is realized via a
Mølmer-Sørensen-type interaction. Z operations can be implemented
in software by updating the phase of subsequent light pulses on the
respective ion through individual control of the light phase. This
allows for the implementation of generalized Mølmer-Sørensen-type
gates MSϕ1,ϕ2 (θ ). (c) Decomposition of a CNOT gate into a Mølmer-
Sørensen gate and local operations.

Entangling operations. Entangling operations acting on
an arbitrary pair of ions are realized by illuminating the
respective ions with a bichromatic light field slightly detuned
from a center-of-mass radial mode, effectively applying a
Mølmer-Sørensen (MS) interaction to the respective ions
[37]. The phase of the light illuminating the ion pair can be
controlled individually, which allows for the implementation
of the unitary operations MSϕ1,ϕ2 (θ ) = exp(−iθS2

ϕ1,ϕ2
) with

Sϕ1,ϕ2 = 1
2 (X1 cos ϕ1 + X2 cos ϕ2 + Y1 sin ϕ1 + Y2 sin ϕ2). A

rotation angle of θ = −π/2 renders the operation maximally
entangling and makes the MS gate operation equivalent to a
CNOT up to local operations [38]. The native implementation
of this entangling gate we use provides only negative values
of θ due to the spectral structure of the collective motional
modes. We want to note that the symbol introduced in the
second panel of Fig. 1(b) widely used throughout this work
refers to an XX rotation with θ = −π/2.

Virtual Z operations. Z rotations are implemented in soft-
ware by manipulating a phase register in the classical control
hardware [39] that keeps track of Z operations for each ion.
The phases of all subsequent single-qubit and entangling op-
erations are shifted according to the state of the phase register
[40].

Currently, the setup under consideration does not allow
for parallel execution of gate operations, as a simultaneous
illumination of up to only two ions is possible. This restriction
is mainly due to a limited number of RF sources controlling
the beam steering optics available in the control hardware and

laser power limitations, as the light intensity illuminating an
ion decreases quadratically with the number of addressed ions
[41]. Modifications to the addressing setup would eliminate
this technical limitation and facilitate parallel execution of
gate operations [15,42].

B. Noise modeling and simulation

In this section we discuss noise processes affecting the
performance of the quantum processor under consideration
and introduce theoretical models describing these processes.
We analyze their influence on the performance of FT circuits
and estimate necessary improvements to achieve a break-even
of FT encoded qubits with respect to bare physical qubits.

1. Idling noise

A fundamental noise process affecting all implementations
of physical qubits is idling noise altering the quantum state of
a qubit, which is not target of an operation at the respective
time. Thereby the effect on idling qubits is not dependent
on the target qubits of the respective operation, in contrast to
crosstalk discussed later in this section. For trapped-ion archi-
tectures utilizing metastable electronic states, three processes
are affecting the state of idling qubits: As the qubit state |1〉
is encoded in a metastable excited state its population decays
exponentially. First, it either decays to |0〉, referred to as am-
plitude damping, or, second, it leaks out of the computational
subspace while decaying to the Zeeman sublevel 4S1/2,mj=+1/2.
The rates of these processes are governed by the lifetime of the
metastable state T1. Third, fluctuations in the laser frequency
or magnetic field during idle time lead to dephasing on a
timescale of T2 ≈ 100 ms [43].

Due to the predominance of dephasing over amplitude
damping and leakage, the incoherent noise channel for idling
qubits can be modeled by Pauli-Z faults and reads

Eidle,deph(ρ) = (1 − pidle )ρ + pidleZρZ. (1)

A more accurate model could also include effects of
correlated dephasing which were reported in previous inves-
tigations [44–46]. However, as idling is only a weak source
of failure in our setup we do not expect a difference between
correlated and uncorrelated idling noise. Thus, we choose to
model the dephasing noise as uncorrelated on the individual
physical qubits. The physical error rate for idling faults pidle

depends on the execution time t of the gate performed on
a subset of ions and the coherence time T2. The incoherent
probabilities for the dephasing process on idling qubits is
given by

pidle = 1

2

[
1 − exp

(
− t

T2

)]
. (2)

The table below shows typical execution times of various
operations in the setup considered and the associated physical
error rates for idling qubits during these operations:
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Operation Time t pidle

Single-qubit rotation 15 µs 7.5 × 10−5

MS gate 200 µs 1.0 × 10−3

Measurement 300 µs 1.5 × 10−3

In the current ion trap architecture, all experiments for
FT state preparation are performed with both auxiliary and
data qubit measurements deferred to the end of the circuit, as
described in Ref. [14], so that no idling faults occur during
the measurements. Simulations presented in Sec. IV partly
contain in-sequence measurements which are modelled with
the respective idling error rate. All in-sequence measurements
are modeled to have the same idling error rate, although mea-
surements showing at least one bright ion are usually followed
by a recooling sequence with a duration on the order of mil-
liseconds [41]. As idling is not the dominant error source we
neglect this dependence of the idling error rate on the outcome
of a measurement.

2. Single-qubit operations

As virtual Z operations are noiseless [40], the only er-
roneous single-qubit operations are resonant operations. We
characterize resonant single-qubit operations experimentally
via randomized benchmarking [47]. For different ions in a
16-qubit register, the fidelity of a single-qubit rotation ranges
from 0.9969(4) to 0.9980(3) with a mean of 0.9976 and
a standard deviation of 2.4 × 10−4. Combined randomized
benchmarking data for sequences of up to 20 Clifford oper-
ations per qubit for all 16 qubits are shown in Fig. 2, data for

FIG. 2. Single-qubit gate benchmarking: Experimental success
probabilities of randomized benchmarking sequences containing up
to 20 Clifford operations in a 16-qubit register. The scatter on the
horizontal axis around the sequence lengths 2, 5, 10, 15, and 20
is introduced for better visibility of the success probability of the
individual random sequences. The discretization on the vertical axis
is given by averaging over 150 executions per random sequence. For
brevity data from 16 qubits are combined to a single data set. The
underlying data for individual qubits can be found in Appendix E.
The decay fitted to the combined data suggests a single-qubit gate
fidelity of 0.99760(8), where the given error is the 95% confidence
interval.

individual qubits can be found in Appendix E. Faults affecting
single-qubit operations acting on a state ρ are modeled as
depolarizing noise, hence the modeled noise channel reads

E (1)
dpl (ρ) = (1 − p1)ρ + p1

3
(XρX + Y ρY + ZρZ ). (3)

With a probability 1 − p1 the ideal operation is imple-
mented and with a probability p1 a fault operator, randomly
drawn from the set of Pauli operations {X, Y, Z}, is applied
subsequently to the ideal gate. For the theory model we choose
p1 = 0.005 for better comparability with Ref. [14] although
recent improvements on the experimental setup slightly in-
creased the fidelity of single-qubit operations.

3. Entangling operations

In the system under consideration, entangling operations
are based on the center-of-mass motional mode, which of-
fers equal coupling to all qubits in the register. Nevertheless,
unwanted coupling to higher order modes with different cou-
pling strengths along the ion string can potentially lead to
a varying fidelity for different qubit pairs in the register. To
avoid benchmarking on all possible ion pairs, the mean fi-
delity of a single entangling gate Ftq = 0.975(3) is estimated
from the quantum state fidelity of the GHZ state |ψGHZ〉 =
(|0〉⊗16 − i |1〉⊗16)/

√
2 prepared across the entire register. A

more detailed description of this procedure can be found in
Appendix F. Although this method does not constitute a rigor-
ous characterization of the underlying individual gates, it can
still provide insights about the system performance in terms
of entanglement generation [48].

Microscopic noise models have been derived in previous
works, considering amplitude fluctuations or gate miscalibra-
tions in particular [49] as well as thermal errors or motional
heating [50] and incoherent overrotations [51]. However, for
simplicity, we apply depolarizing noise to two-qubit gates,
as we do for single-qubit operations since our arguments
of advantageous FT quantum computation primarily regard
the appropriate FT design of quantum circuits. Depolarizing
noise is considered the most general and architecture-agnostic
incoherent noise channel because the fault operators of the
depolarizing noise channels form a basis in the space of
single- and two-qubit unitaries, respectively. The modeled
error channel for depolarizing noise on entangling gates reads

E (2)
dpl (ρ) = (1 − p2)ρ + p2

15

15∑
i=1

E (i)
2 ρE (i)

2 (4)

E2 = {σk ⊗ σl ,∀k, l ∈ {0, 1, 2, 3}} \ {I ⊗ I}.
With a probability p2 one of 15 nontrivial weight-2 Pauli

faults is added to the ideal entangling gate. We choose p2 =
0.025 as estimated from the GHZ state preparation. Although
overrotations have been identified as a dominant source of
error in ion trap quantum processors before [52,53], we find
in Sec. IV that depolarizing noise does not perform worse at
estimating logical failure rates than an incoherent overrotation
noise model. The latter takes into account the physical nature
of optical qubit operations, i.e., laser-driven rotations around
a given Pauli axis (see Appendix A). We provide further com-
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FIG. 3. Electric field crosstalk: Fourier optics calculation of
aberrations affecting a tightly focused laser beam. We simulate light
with a wavelength of λ = 729 nm illuminating an objective with an
aperture diameter of 40 mm and a focal length of 20 mm. Aber-
rations are introduced by distorting the input wavefront, where the
peak-to-valley phase deviation compared to a plane wave amounts to
2λ. (a) In the upper left image the ideal electric field amplitude E (x)
of an aberration-freely focused Gaussian beam is depicted. The other
color plots show the effect of different types of aberrations, namely
coma (upper right), spherical aberration (lower left) and astigmatism
(lower right). The increased diameter of the field distribution leads
to increased leakage light at neighboring ions. (b) Cut along the
horizontal axis of the field distributions shown in (a) through the
maximum intensity point for the ideal and the three aberrated spots.

parison between overrotations and depolarizing noise through
quantum state fidelity calculations in Sec. VI.

4. Crosstalk

Another noise process is the unintended manipulation of
qubits in spatial proximity to a target qubit, which we refer to
in this work as crosstalk. The physical process causing this is
leakage light from the tightly focused laser beam, where the
main contributions are aberrations caused by imperfect optical
systems. In Fig. 3(a) we depict a Fourier optics calculation
[54] of the profiles of the electric field amplitude being propor-
tional to the Rabi frequency of a resonant operation. We show

FIG. 4. Ion-string crosstalk amplitude: Measured ratio ε of
crosstalk to target Rabi frequency for resonant operations acting on
all 16 qubits, with a maximum and mean next-neighbor crosstalk
ratio of 1.6 × 10−2 and 0.9 × 10−2, respectively.

the electric field around the target ion position for an ideally
focused Gaussian beam, but also for beams affected by coma,
spherical aberration and astigmatism [55]. The parametriza-
tion of the electric field amplitude is Eϕ (x) = E (x) exp (iϕ),
where x is the position in a plane orthogonal to the beam
propagation at the ion location and E (x) is a positive, real
number. The magnitudes of the aberrations in this example
are chosen to give peak-to-valley wavefront distortions of 2λ

and do not necessarily reflect the situation in the experiment.
Figure 3(b) shows the calculated electric field amplitude along
the ion string, where an offset of zero corresponds to the
position of the target ion. In a 16-ion crystal the distances to
neighboring ions in the discussed setup are typically around
4 µm. As a figure of merit for the magnitude of the effect
of this crosstalk we use the ratio ε = 
n/
 of the Rabi
frequencies of the unintended manipulation at a neighboring
ion 
n and the target operation 
. In the experimental setup
under consideration the maximum nearest-neighbor crosstalk
ratio is εmax = 1.6 × 10−2 while the mean over the register
is εmean = 0.9 × 10−2 in a 16-qubit register with an axial
trap frequency of 400 kHz. The interion distances range from
3.6 µm in the center to 5.7 µm at the edge of the ion chain.
Crosstalk ratios ε for the 16-qubit register are shown in Fig. 4.
We neglect crosstalk to nonnearest neighbors in our model as
the measured mean Rabi frequency ratio is more than an order
of magnitude lower than between direct neighbors.

It is crucial to note that the phase of the leakage light
can significantly differ from the phase of the light at the
target ion position. Aberrations that distort the wavefronts at
the input of the focusing optics propagate to the ion string
in the focal plane and lead to an electric field distribution
around the target ion with spatially variable phase. This phase
is experimentally accessible via a Ramsey-type experiment,
where a superposition state is prepared with leakage light by
illuminating a neighboring ion and subsequently its phase is
analyzed by applying a resonant single-qubit operation with
varied phase to the qubit affected by crosstalk. As can be seen
in Fig. 5, the measured phase difference between target and
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FIG. 5. Ion-string crosstalk phase: Measurement of the phase
difference between target and crosstalk light field in a 16-qubit ion
crystal. The crosstalk phase covers the whole interval [0, 2π ] for
different target-neighbor pairs but is stable up to tens of degrees over
hours.

neighboring ion varies across the whole interval of all possible
values [0, 2π ] for different target ions. The wavefront distor-
tions likely stem from nonideal alignment of the optical setup
and surface imperfections in the beam path, and therefore the
phase difference of neighboring ions is stable on the timescale
of hours.

Based on the aforementioned experimental observations
we model crosstalk noise as follows in simulations: When a
resonant single-qubit gate is applied to a target ion with a
rotation angle θ = 
t , where 
 is the Rabi frequency and
t is the gate duration, nearest neighbor ions see a resonant
operation with a rotation angle θn = εθ . After Pauli twirling
(see Appendix A), this leads to the incoherent error process

E (ρ) = cos2 εθ

2
ρ + sin2 εθ

2
(cos2 ϕXρX + sin2 ϕY ρY ) (5)

for the neighboring ions, where ϕ is the light phase at the re-
spective neighbor ion position. As the phase relation between
the light at the target ion and neighbor ion position varies
along the ion chain (see Fig. 5), we average over all possible
crosstalk phases to obtain the incoherent noise channel

Ec1 (ρ) = (1 − pc1 )ρ + pc1

2
(XρX + Y ρY ) (6)

for each single-qubit crosstalk location. Here pc1 = sin2 εθ
2

with ε = 1 × 10−2 is the probability that crosstalk induces an
error on a neighboring qubit. Applying the same reasoning to
model crosstalk errors for two-qubit gates gives the channel

Ec2 (ρ) = (1 − pc2 )ρ + pc2

4
(Xt XnρXt Xn + XtYnρXtYn

+ Yt XnρYt Xn + YtYnρYtYn) (7)

for any pair of target and neighbor ions denoted by subscripts
t and n, respectively, with pc2 = sin2 επ

4 . An illustration
of all target-neighbor locations can be found in Fig. 20
below.

5. State preparation and measurement

Measurements in the Z-basis are performed by illuminat-
ing the ion chain with light resonant to the 4S1/2 to 4P1/2

transition, leading to fluorescence light emitted by ions pro-
jected to |0〉 and no emitted photons from ions projected to
|1〉 [56]. Measurement errors are caused by the overlap be-
tween bright and dark count distributions originating from the
intrinsic overlap of the Poissonian distributions of dark and
bright state fluorescence counts and by the probability that an
ion decays from the metastable excited state during the detec-
tion time [57]. State initialization of the qubit to 4S1/2,mj=−1/2

is achieved by frequency-resolved optical pumping on the
quadrupole transition. The ions are illuminated with light res-
onant to the transition from 4S1/2,mj=+1/2 to 3D1/2,mj=−3/2, while
a repumping laser is broadening the transition [58]. Typical
probabilities for initialization and measurement faults in the
setup considered are around 3 × 10−3 [56]. Both initialization
and measurement errors are again modeled as depolarizing
noise. Therefore, the model is the same as in Eq. (3) with
error probabilities pi = pm = 4.5 × 10−3, corresponding to a
flip error probability of 3 × 10−3 for initialization and mea-
surement, respectively.

All of the above-mentioned noise models are discussed in
more detail in Appendix A alongside coherent overrotations
and coherent crosstalk on MS gates. Since it is known that
QEC decoheres noise through encoding and stabilizer mea-
surement, although coherent by nature [59,60], we mainly
focus on incoherent noise in this paper.

6. Numerical methods

In Sec. IV we estimate logical failure rates of logical state
preparation protocols by performing numerical simulations of
both stochastic incoherent Pauli noise models and coherent
noise as described above. We provide results of numerical
simulations for logical failure rates under both depolariz-
ing noise on single-qubit gates, two-qubit gates, physical
qubit initialization, and measurement as well as an extended
noise model. It includes dephasing noise on idling qubits and
crosstalk on both single- and two-qubit gates on top of said de-
polarizing noise. We use stabilizer simulations [61] for Pauli
state preparation with incoherent noise and statevector simula-
tions otherwise, i.e., either for magic state preparation or when
applying coherent noise to either type of state preparation. If
applicable, stabilizer simulations are advantageous since they
allow for simulation of Clifford circuits in polynomial time
according to the Gottesman-Knill-theorem [62]. The expo-
nentially large n-qubit Hilbert space of dimension 2n poses
a numerical challenge for state-vector simulations which run
slowly and consume an exponential amount of memory with
growing number of qubits n. All simulations in this work are
performed using a modified version of the Python package
“PECOS” [63,64]. The effect of incoherent noise is treated by
means of direct Monte Carlo sampling (MC) and subset sam-
pling (SS), which is an importance sampling technique. Both
methods have a preferential range of applicability: MC is used
for larger physical error rates, SS achieves accurate estimates
with well-defined confidence intervals for lower physical error
rates and is especially useful for extracting scaling behavior
(see Appendix B for details on both methods).
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IV. PROTOCOLS FOR FT ADVANTAGE
OVER PHYSICAL QUBITS

The paradigm of FT circuit design holds the promise to
maintain coherence within a quantum computation where
many physical qubits are involved and suffer the influence
of noise [65]: Faults on individual components of a quantum
circuit must not cause errors, which cannot be corrected by
the QEC code, on the qubits holding the logical information.
There exist errors E at the end of the circuit, resulting from
faults which happen at locations within the circuit, that have
weight wt(E ) larger than t = � d−1

2 	. They are thus uncor-
rectable and will lead to failure of the QEC procedure. Here
d = 2t + 1 is the distance of the QEC code, and the weight
is the number of qubits on which the error E acts. There will
always exist configurations of t + 1 faults that cause logical
failure, i.e., lead to application of an unintended logical oper-
ator when performing QEC because wt(E ) > t .

Up to t faults can be in principle prevented from propa-
gating to cause more than the correctable amount of t errors
by advantageous circuit design. By unfortunate circuit design
though, large distance logical states could also be corrupted
by propagation of lower order faults. In this case one could
encode into lower distance logical states directly instead of
using such circuits. We denote fault tolerance towards up to t
faults as “level-t FT” or “FTt .” Assume that faults at any cir-
cuit location happen independently with probability p. Then
the logical failure rate pL of FT implementations of a distance
d QEC code scales as pL ∝ pt+1 in the limit of low physical
error rate p → 0. For level-t FT all fault configurations up
to order pt must only cause correctable errors [66]. Note that
the weight of the error determines whether or not it is cor-
rectable and the probability of occurrence for the microscopic
fault configuration that propagates to an uncorrectable error
determines its order in the polynomial for pL.

In this work we discuss FT schemes of level t = 1 which
thus display a quadratic dependence of the logical failure rate
pL ∝ p2 as p → 0. This scaling of FT implementations is
contrasting non-FT circuits or operation of physical qubits
where single faults can cause uncorrectable errors, thus lead-
ing to a linear scaling of the logical failure rate pL ∝ p at low
physical error rates p. Although FT circuits may involve more
(noisy) qubits and gates than their non-FT counterparts, fault
tolerance ensures that there exists a regime of physical error
rates where the polynomial dependence leads to lower logical
failure rates than non-FT and physical qubit implementation
[24,25].

The Steane code [67] shown in Fig. 6 is the smallest repre-
sentative of the family of topological color codes [68,69]. As
a [[7,1,3]] code, it encodes n = 7 physical qubits into a single
logical qubit with distance d = 3 allowing for correction of
t = 1 arbitrary Pauli errors while t + 1 = 2 or more errors
lead to logical failure [70]. It has low resource overhead
needed for FT universal qubit operations: Not only are all
Clifford gates transversal and thus inherently FT in the Steane
code. Also, the non-Clifford T gate can be added to the logical
gate set, for instance, by magic state injection [27]. Pauli rota-
tions with angle π/4, i.e., the T gate, can be performed fault
tolerantly in this way as long as an appropriate magic state is
available as a resource. The injection circuit then requires only

FIG. 6. Steane code: Left: The Steane code is the smallest rep-
resentative of the family of topological color codes. As a [[7,1,3]]
code, it uses seven physical qubits to encode a single logical qubit
with distance d = 3 allowing for correction of t = � d−1

2 	 = 1 ar-
bitrary Pauli error. Physical qubits sit on the vertices of the graph.
Stabilizer generators Ki are plaquettes spanning four physical qubits
with mutual overlap of two qubits and are given by Eq. (8). The X -
and Z-type stabilizers are symmetric. Right: All gates of the Clifford
group can be implemented transversally and thus fault tolerantly in
the Steane code and larger distance 2D color codes.

Clifford operations, which are suitable for the Steane code
as they respect the FT requirements stated above. Different
strategies for logical qubit initialization in the logical zero
state and a logical magic state are addressed in this section.

The logical qubit is encoded in the [[7,1,3]] Steane code
defined by the six stabilizer generators

KX
1 = X4X5X6X7, KZ

1 = Z4Z5Z6Z7,

KX
2 = X1X3X5X7, KZ

2 = Z1Z3Z5Z7,

KX
3 = X2X3X6X7, KZ

3 = Z2Z3Z6Z7, (8)

which are symmetric under exchange of X and Z . Any code
state |ψ〉L is a +1 eigenstate of all stabilizers and thus stays in-
variant under application of any stabilizer. As a consequence,
Pauli operators acting on code states can be multiplied by
stabilizers without changing their effect on the code state. Two
Pauli operators that differ only by multiplication with stabi-
lizers are thus called stabilizer equivalent. Since the stabilizer
generators exclusively consist of X or Z operators each, the
Steane code belongs to the class of CSS (Calderbank-Shor-
Steane) codes [71,72]. The transversality of the Hadamard
and the CNOT gates follows directly from these two properties,
respectively. The logical operators can be chosen as XL = X ⊗7

and ZL = Z⊗7. By multiplication with stabilizers they can be
expressed as weight-3 operators reflecting the fact that the
Steane code can correct a single Pauli error. Single Pauli errors
Xi and Zj on any two single qubits i �= j can be corrected in-
dependently, or, as a consequence, a single Y -type error since
Yi 
 XiZi (for i = j). Each possible syndrome measurement
outcome is mapped to a unique recovery operation, which
guarantees the correction of all single Pauli errors, with a
look-up table as shown in Table I.

However, this mapping becomes nonunique if weight-2
errors can also occur. If two different errors map to the same
syndrome then the recovery operation may cause erroneous
application of a logical operator as a result of the error cor-
rection (EC) attempt. As an example of such a logical failure,
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TABLE I. Look-up table for the seven qubit Steane code as
shown in Fig. 6. + and − indicate a positive and negative expectation
value of the respective stabilizer operator. All six form the error syn-
drome (KX

1 , KX
2 , KX

3 , KZ
1 , KZ

2 , KZ
3 ). Only the Z-type syndromes and

corresponding X -type recoveries are shown. Since the Steane code is
symmetric under exchange of X and Z , the Z-type recoveries from
X -syndrome measurements can be applied analogously. The two
three-bit syndromes (KX

1 , KX
2 , KX

3 ) and (KZ
1 , KZ

2 , KZ
3 ) are sufficient

to correct all single Pauli errors.

KZ
1 , KZ

2 , KZ
3 Recovery R

+ + + I
+ + − X2

+ − + X1

+ − − X3

− + + X4

− + − X6

− − + X5

− − − X7

consider the error E = X3X5. The Z syndrome will be mea-
sured as − + −, and by the look-up table we would apply R =
X6 as a recovery operation. The total operator RE = X3X5X6

is a logical operator since it is stabilizer equivalent to XL given
above [73].

Transversal implementation such as for Clifford gates
shown in Fig. 6 directly ensures that single faults will at most
cause a weight-1 error in each encoded logical qubit because
transversal gates never couple two qubits from the same block.
The weight-1 errors in each block can then independently be
corrected in QEC.

In this work, we use unitary encoding circuits for the ini-
tialization of logical qubits. This is in contrast to initialization
procedures which rely on in-sequence stabilizer measure-
ments and feed-forward of syndrome information. Unitary
encoding circuits typically prepare logical states with fewer
entangling gates at the cost of needing large connectivity
between the data qubits which is provided natively in our
trapped-ion architecture. These circuits allow for determinis-
tic preparation of the code state since they avoid data qubit
measurements altogether. Nonetheless, due to the large degree
of interqubit connectivity, faults that happen on entangling
gates might propagate throughout the circuit and cause un-
correctable errors as a result. This is illustrated, e.g., for the
encoding circuit in Fig. 7. For FT state preparation in the
Steane code the goal is to avoid such single fault events being
able to cause weight-2 errors to occur on the final data qubit
state. We can achieve FT by making use of recently introduced
flag circuits [3,4]. Here additional auxiliary qubits called flag
qubits are coupled to the data qubit block. Their measurement
outcomes herald the potential presence of uncorrectable errors
on the data qubit state. We refer to a flag measurement of −1
as a “triggered flag” and call the +1 measurement outcome a
“clear flag”.

In the remainder of this section, we analyze both determin-
istic and nondeterministic protocols for FT state preparation.
Deterministic protocols, although they may contain mea-
surement operations, always terminate with the data qubits
prepared in the desired logical state in each individual pro-

FIG. 7. Pauli state preparation circuits: The logical zero state of
the Steane code can be initialized using MS gates and single-qubit
rotations about the X and Y axes. After the first block the |0〉L state
is prepared non-fault tolerantly (non-FT) on the data qubits 1 to 7.
An example of a single Z1 fault which can cause an uncorrectable
error is shown as 12-cornered star (blue). The second block, shaded
gray, couples to an additional flag qubit which heralds successful
fault-tolerant (FT) state preparation. The Z1 will propagate and trig-
ger the flag. When the flag qubit is clear, it is guaranteed that |0〉L

is prepared up to a weight-1 error. Crosstalk faults, such as X3X5

(red eight-cornered stars), can devastate the FT property (cf. Sec. V).
Initialization of physical qubits as |1〉 is done by first initializing them
as |0〉 and then performing an X rotation of angle π . The last two
gates Q† and R† (shaded gray) of the first block are needed only for
non-FT but not for FT state preparation. General propagation rules
for Pauli faults through MS gates are shown in the lower panel.

tocol execution. They are designed to tolerate all possible
faults of order O(p1) (FT1). With nondeterministic proto-
cols instead, a fraction of preparation runs is discarded when
measurements of one or more flag qubits indicate that an erro-
neous state has been prepared. This cannot be foreseen a priori
due to the stochastic nature of noise. Depending on whether
the chosen protocol is deterministic or not, a flagged state is
either corrected using an appropriate recovery operation, or
is discarded. This recovery operation is chosen conditioned
on triggered flags and is different from the look-up Table I
used when flags are clear. Nondeterministic protocols typi-
cally exhibit lower logical failure rates as they contain fewer
gates at the cost of repeatedly executing the circuit in case
of triggered flags. On the other hand, deterministic protocols
perform worse due to their larger qubit overhead or circuit
depth. In the remainder of this section we theoretically in-
vestigate both types of protocols for Pauli and magic state
preparation. For the nondeterministic preparation circuits used
in the experiment [14], we provide a scaling analysis of their
logical failure rates dependent on physical error parameters in
order to estimate how much improvement of physical oper-
ations is needed to experimentally achieve lower infidelities
than physical qubits.

A. Nondeterministic state preparation

In the following, we introduce and discuss circuits for non-
deterministic FT state preparation for both Pauli and magic
states. For both types of states we provide an evaluation of
logical failure rate scaling with physical error parameters ob-
tained via numerical simulations of the two different noise
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models described in Sec. III B. We assess the performance
of FT protocols compared to physical qubit operations to
estimate break-even points of FT advantage, i.e., identify for
which physical error parameters the infidelity of logical states
is lower than their respective physical qubit counterparts.

1. Logical Pauli states

The circuit shown in Fig. 7 is used to prepare the |0〉L state
which is the +1 eigenstate of the logical Z operator ZL and
also, as any code state, the +1 eigenstate to all stabilizers
including the generating plaquette operators in Fig. 6 [49,74].
The entangling MS gates prepare the plaquette eigenstates in
an interleaved way which minimizes the number of gates. MS
gates 1, 3, and 7 prepare K2, MS gates 2, 6, and 8 are needed
for preparation of K3 and MS gates 4, 5, and 8 are involved
in preparing K1 (counting left to right and top to bottom)
[75]. After executing the first block of the circuit, the state
is prepared non-fault tolerantly, meaning that single faults can
still corrupt the |0〉L state, e.g., the fault Z1 after the third MS
gate would propagate to the uncorrectable error X1X3 at the
end of the first block. FT is achieved by running the second
block which acts as verification. Here the flag qubit couples
to the data qubits, effectively measuring a weight-3 logical
Z operator. This logical Z operator must be chosen such that
any weight-2 error resulting from a single fault will trigger the
flag. If the flag is triggered the state is discarded and another
trial must be run until the flag is clear. The flag qubit measure-
ment heralds uncorrectable errors such as the one caused by
the aforementioned Z1 fault. The error will propagate through
the second MS gate of the verification block to X1X3Xf so that
the flag will be triggered.

Crosstalk is known to be a major source of failure in ion
trap quantum computers as described in Sec. III. The effect
of crosstalk in general does not respect the FT circuit design
principle [56,76,77]. As an example, consider the FT Pauli
preparation circuit in Fig. 7. Here a X3X5 crosstalk fault can
occur after the fifth MS gate under the noise channel in
Eq. (7). It will propagate through the circuit and cause an
uncorrectable weight-2 X error on the data qubits without
triggering the flag. This illustrates that even though logical
failure rates of FT circuits are expected to scale quadratically,
there exists a linear term in the expansion of pL caused by
dangerous crosstalk fault locations which will eventually de-
stroy the advantageous scaling behavior (for more details on
the microscopic crosstalk noise model and its fault operators
see Appendix A).

After successfully preparing the logical zero state |0〉L,
any of the remaining five cardinal states on the Bloch sphere
|1〉L , |+〉L , |−〉L , |+i〉L and |−i〉L can be reached by subse-
quently applying the appropriate logical single-qubit rotation
to |0〉L. As all Clifford gates can be realized transversally
and are thus FT in the Steane code, so is the full preparation
procedure for any of the six Pauli states.

2. Logical magic state

It is known that Clifford gates are not sufficient to im-
plement single-qubit rotations of an arbitrary angle on the
Bloch sphere. Therefore, the Clifford gates alone cannot be
used for universal quantum computation. In order to reach

FIG. 8. Non-FT magic state preparation circuit: The physical
magic state is prepared on qubit 3 and then grown into the encoded
|H〉L state of the Steane code. Hermitian-conjugate rotation operators
amount to rotations in the respective opposite direction. For coherent
rotation noise simulation, the direction of rotation affects the overall
logical failure rate.

universality, the Solovay-Kitaev theorem states that any point
on the logical Bloch sphere can be reached with in principle
arbitrary precision when a π/4 rotation about an arbitrarily
chosen axis is available [78,79]. We choose to implement a
logical T gate as

TL = exp

(
−i

π

8
YL

)
(9)

a rotation about the Y axis because the corresponding magic
state

|H〉L = cos

(
π

8

)
|0〉L + sin

(
π

8

)
|1〉L (10)

is the +1 eigenstate to the logical Hadamard operator HL.
Thus, the logical magic state can be prepared by FT measure-
ment of HL which will project the data qubit state onto |H〉L
if the measurement outcome is +1. When |H〉L is available,
TL can be implemented by magic state injection, which re-
quires only Clifford gates [5]. Because all Clifford gates are
transversal in the Steane code, preparing |H〉L fault tolerantly
with high fidelity is the crucial step for implementing the FT
universal gate set.

The principle of repeat until success is also employed
for magic state preparation in the nondeterministic protocol
given by Ref. [5]. The circuit in Fig. 8 prepares the magic
state |H〉L non-fault tolerantly, analogous to the first step of
FT Pauli state preparation. Verification of the prepared state
consists of two steps. First, the logical Hadamard operator
is measured, which projects the data qubit state to the HL

axis. The flag circuit shown as part of the sequence in Fig. 9
is used to measure HL fault tolerantly. Any dangerous fault
which could occur on the measurement qubit in this block
will trigger the flag. Transversality of HL ensures that faults on
single data qubits will not spread to higher-weight errors. The
measurement qubit itself is also interpreted as a flag in this
protocol so that a run that prepares the −1 eigenstate of HL is
discarded as well. Second, one round of FT parallel stabilizer
readout, given in a CNOT version by Ref. [6], flags all other
potentially dangerous faults. In this step, we measure X and
Z stabilizers in an interleaved way, which is more resource-
efficient because of its reduced number of 28 entangling gates
compared to sequential stabilizer measurements (at least 48
entangling gates). First, two Z and one X stabilizer, KX

2 , KZ
1 ,
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FIG. 9. FT magic state preparation circuit: The logical magic state is prepared fault tolerantly after executing all three circuit blocks.
Single-qubit Z rotations are absorbed into phases of MS gates and single-qubit rotations. [For an accepted state the single-qubit Z rotations
R(1)

Z (−3π/4)R(2)
Z (−3π/4)R(3)

Z (−π )R(4)
Z (−3π/4)R(5)

Z (−3π/4) R(6)
Z (π/4)R(7)

Z (−π/4) need to be applied (in software) to the data qubits 1 to 7.]
(a) Non-FT magic state preparation is followed by a flag-FT measurement of the logical Hadamard operator. The flag qubits herald dangerous
faults which may happen during preparation or measurement. Note that the single-qubit rotations in the non-FT preparation block differ from
Fig. 8 since they were optimized in conjunction with the subsequent Hadamard measurement block. (b) Flag-FT parallel syndrome readout
circuit. Auxiliary qubits act as flags. If any flag is measured as −1 the state is discarded. (c) Phase-shifted MS gates with six different phases
on their respective data qubit are used in the circuit (cf. Fig. 1). (d) Sequence of logical building blocks of the FT magic state preparation
protocol acting on data qubits and flag qubits.

and KZ
3 , are measured; then, in the second half, the remaining

stabilizers KZ
2 , KX

1 , and KX
3 are measured via one auxiliary

qubit each. The auxiliary qubits are coupled to each other by
four additional entangling gates. The interleaved arrangement
of entangling gates used for each of the individual stabilizer
measurements permits that the auxiliary qubits act simulta-
neously as both readout and flag qubits. This means that the
circuit can be used for error detection: If an error is already

present before running the circuit, the auxiliary qubits will
indicate a nontrivial syndrome. If a dangerous fault happens
during the circuit and it acts on an otherwise ideal input state,
the auxiliary qubits act as flags and will be triggered. Thus
the circuit can be used to verify that the logical qubit is in the
+1 eigenstate of all stabilizers, without introducing additional
faults if all flags are clear. All three blocks as shown in Fig. 9
need to be run and the state is accepted only if none of the
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eight flag qubits is triggered. The compiled version of this pro-
tocol into MS gate circuits contains single-qubit Z rotations
and thus the phases ϕ1, ϕ2 of the MS gates MSϕ1,ϕ2 (−π/2)
and the phase ϕ of single-qubit rotations R(ϕ, θ ) in Fig. 9 are
adjusted as described in Sec. III A [also see Eqs. (A43) and
(A44)].

3. Scaling results

As illustrated above, the regime of advantageous FT im-
plementation is to be found at low physical error rates due
to its quadratic scaling behavior with physical error rate as
compared to linear scaling of physical qubits or logical error
rates of non-FT protocols. In order to demonstrate the capabil-
ities of FT state preparation protocols to outperform non-FT
implementations, we show the scaling of logical failure rates
dependent on the set of physical error rates described above.
We provide an easily accessible overall idea of scaling be-
havior, such that we can estimate the necessary improvements
of trapped-ion operation fidelities, by introducing a single
parameter λ to uniformly scale all physical error parameters
as

λ · (p1, p2, pi, pm, . . . ). (11)

Claiming FT advantage over physical qubits must be
specifically justified for a given hardware implementation
because in different experimental setups one encounters dif-
ferent physical phenomena, which realize the physical gate
operations or even the physical qubit to begin with. One cri-
terion to judge upon FT advantage, suggested in Ref. [80], is
that the logical operation realized within a given hardware ar-
chitecture should be compared to the corresponding physical
operation as it could be realized in exactly that same hardware
architecture. For the initialization of the logical qubit, we
compare logical zero state preparation to the physical qubit
initialization error rate and logical magic state preparation
to first initializing the physical qubit to |0〉 followed by a
physical Y rotation by an angle π/4, which is the most
straightforward way to prepare the physical magic state |H〉 =
T |0〉. Here we opt to provide the said comparison with the
same physical error parameters achieved in our ion trap setup
for both the logical and corresponding physical operation [81].
Additionally to the, more rigorous, comparison of logical to
physical operations, another break-even criterion is derived
from comparing logical failure rates with the MS gate error
rate p2, as done previously, e.g., in Refs. [82] and [83], since
the overall noise in our experiment is dominated by the error
rate p2 [84].

Our definition of the logical failure rate pL(λ) is the logical
infidelity 1 − FL. It reflects the probability to falsely conclude,
by measurement of logical operators, that the desired state has
been prepared correctly (up to correctable errors) when in fact
the wrong logical information is output on the data qubits.
The logical fidelity FL is determined by the expectation value
of the projector P±O onto the respective axis O ∈ {ZL, HL} of
the logical Bloch sphere

P±O = I ± O

2
(12)

for the logical zero or the logical magic state respectively. For
a single preparation of the |0〉L state, the expectation value

〈PZL 〉 after one round of ideal EC may take only the values
0 or 1. Dangerous X errors are either correctly recovered
from or will result in a logical X operator after ideal EC
(〈0|1〉 = 0, 〈0|0〉 = 1). For the logical magic state, logical
errors of all three Pauli types X, Y , and Z can be present
on the state after ideal EC. A logical Y flip causes the out-
put state to flip from the correct magic state |H〉L to the
orthogonal −1 Hadamard eigenstate |−H〉L (〈H |Y |H〉 = 0).
Logical X - and Z-flipped states still have finite overlap with
|H〉L thus contributing a finite value to the logical infidelity
(〈H |X |H〉 = 1/

√
2, 〈H |Z|H〉 = 1/

√
2). We discuss fidelity

measures further in Sec. VI. For flag circuits, all preparation
rounds, which trigger a flag and are thus discarded, do not
contribute to the logical failure rate.

In Fig. 10(a) we show the uniform scaling of all physical
error parameters with the scaling parameter λ ∈ [10−4, 101]
for the non-FT and FT Pauli state preparation compared to
physical qubit parameters. The first is the rate 2pi/3 at which
depolarizing noise of strength pi causes failure of initializing
a physical qubit to |0〉. The second is the MS gate error rate
p2. We observe that the FT preparation achieves lower logical
failure rates than both the non-FT preparation and physical
MS gate error rate for all values of λ. It is larger than the
physical qubit initialization error rate for λ � 0.3 and lower
than the physical qubit initialization error rate for λ � 0.3.
Within the interval λ ∈ [10−1, 101], i.e., with one order of
magnitude stability around the experimentally achieved phys-
ical error parameters at λ = 1, the simulations with the four
parameter depolarizing noise model quantitatively agree with
the extended noise model. It is only at very low physical
error parameters λ � 10−1 that the extended noise simula-
tion deviates from the depolarizing noise estimation. This is
because crosstalk, which does not respect the FT properties
of the circuit, becomes the dominant source of failure in this
domain. The scaling becomes linear here with extended noise
whereas the quadratic scaling of depolarizing noise continues
for all λ → 0. In this regime of low λ, we cannot rely on
predictions made from the depolarizing noise model. In the
experimentally accessible regime around λ = 1 the depolar-
izing noise prediction is as reliable as the extended noise
model.

It is known from previous investigations of incoherent
noise in general and crosstalk in particular that incoherent
Pauli noise may underestimate logical failure rates [77,85–
87]. For the experimental error parameters at λ = 1 coherent
overrotation noise on MS gates in the FT Pauli state prepara-
tion circuit causes an infidelity of 0.0116(7) which is larger
than the incoherent depolarizing noise 0.0076(5) or an inco-
herent XX overrotation channel 0.0082(6). When also adding
coherent XX -type crosstalk, as given by Eq. (A58), infidelity
increases to 0.0141(7), while the experimentally measured
value is 0.012+5

−4.
The scaling behavior of the magic state preparation proto-

cols, which we show with depolarizing and extended noise in
Fig. 10(b), exhibits qualitatively similar features as the Pauli
state preparation described above. In our setup, the physical
qubit criterion of first initializing the qubit to |0〉 and then
applying a physical T gate is stricter than claiming to beat the
MS gate error rate p2 for our specific physical error parameter
values. Both physical qubit criteria yield lower pL than the
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FIG. 10. Logical state scaling: Uniform scaling with a factor λ of all physical error parameters in the non-FT and FT state preparation
circuits alongside with parameters of physical qubits (both initialization—gray, dotted—and entangling operation—gray, solid). For numerical
simulations, we employ direct Monte Carlo (MC, cross markers) and subset sampling (SS, triangle markers) with subsets up to wmax = 3
in their preferential domain of physical error rates (see Appendix B for a more detailed discussion). At the experimentally achieved rates
λ = 1 (star marker) the models coincide in their prediction of logical failure rates within uncertainty intervals. (a) Pauli state: We compare
the extended noise model containing idling and crosstalk (solid lines with markers) to depolarizing noise on single and two-qubit gates,
initialization and measurements (dashed lines with markers). For each MC data point and subset failure rate we sample at least 100 times and
until the uncertainty of the respective logical failure rate estimator is below a relative error of 0.5 but at most 104 times. (b) Magic state: Logical
failure rates using the extended noise model and the depolarizing noise model are shown. We sample at least 100 times for each MC data point
and subset failure rates of the non-FT circuits and the FT circuit with extended noise. For the FT circuit with depolarizing noise we use at least
1000 samples for each subset failure rate. We sample at most 104 times for the non-FT circuits and up to 105 times for the FT circuits or until
a relative error of 0.3 for the FT circuit under depolarizing noise and 0.5 for the other cases is reached. The leftmost MC data point of the FT
depolarizing line is obtained from 2 × 105 samples. For FT preparation at λ = 101 the logical failure rate decreases again which is related to
the fact that most runs are discarded.

non-FT circuit for all observed values of the uniform scal-
ing parameter λ. Remarkably, the simulation data for the FT
magic state preparation suggest that its logical failure rate pL

is lower than for both physical operations within the full λ

interval. In the regime of low physical error rates λ � 0.03
we find that the advantage of the FT implementation over
both physical qubit criteria, i.e., the offset between the parallel
lines, is of more than one order of magnitude. This implies
that we surely beat the physical qubit criteria despite the
destructive phase-averaged crosstalk noise.

From the preceding analysis we conclude that the depo-
larizing noise model is well suited to predict experimentally
measured logical infidelities. With future improvements of
physical ion trap operations, more complex noise models
should be taken into account. Only moderate experimental im-
provements, smaller than one order of magnitude, are needed
in order to reach FT advantage over physical qubits judged by
comparison with the corresponding physical qubit state prepa-
rations. We now move on to discuss deterministic protocols
for FT state preparation.

B. Deterministic state preparation

The FT state preparation procedures discussed so far can
be modified such that state preparation is deterministic, i.e.,
states never need to be discarded. If the acceptance rate of

a nondeterministic protocol becomes too low, they might
become experimentally unfeasible, e.g., due to cycle time
constraints, although the fidelity of accepted states is high.
With sufficiently low physical error parameters, the additional
qubit and gate overhead that deterministic protocols require
may not cause a severe increase of logical failure rates. The
deterministic protocols for Pauli and magic state preparation,
which we will discuss, make use of the fact that the flag has
been triggered which limits the number of errors which can
be present on the data qubits. The measurement information of
the flag qubit is used to conditionally apply additional operator
measurements. As long as all errors that are not stabilizer
equivalent can be distinguished by those measurements, the
combined flag and syndrome information can then be used to
correct all errors that are caused by single faults in the circuit,
thus preserving the FT property.

1. Logical Pauli state

In the following we lay out a new protocol for determin-
istic FT Pauli state preparation. The desired |0〉L state can
still be recovered even when the flag is triggered instead of
discarding the flagged state as in the nondeterministic case.
While a single error is still tolerable, a weight-2 error leads to
application of an erroneous recovery operation which causes
logical failure when using the look-up table decoder from

042422-12



STRATEGIES FOR A PRACTICAL ADVANTAGE OF … PHYSICAL REVIEW A 107, 042422 (2023)

FIG. 11. Deterministic FT state preparation: Schemes with logical building blocks acting on registers of data qubits and auxiliary qubits.
Shaded blocks are applied only conditioned on classical measurement information. (a) |0〉L: The non-FT encoding and verification blocks
(|0〉nFT and V ; see Fig. 7) are followed by additional measurements of Z stabilizers if the flag is triggered. Measuring with a single auxiliary
qubit is sufficient to preserve the FT property of the scheme. A recovery operation R is applied according to the modified look-up Table II
depending on how many stabilizers are measured (block KZ

nFT). When the flag is clear no additional measurements and recovery are performed.
(b) |H〉L: Non-FT magic state preparation is followed by three repetitions of Hadamard measurement and FT EC. The last EC block is executed
only if the third Hadamard measurement yields a nontrivial result. Finally, a logical Y flip (block Y ) is applied to the data qubits if the Hadamard
expectation value is measured as −1 in the second and the third round. (c) Four flag qubits are necessary to correct all dangerous errors that
can happen during the Hadamard measurement. Our compiled MS gate circuit used to measure the logical Hadamard operator is shown in
(d). If and only if the flag pattern f0, f2, f3 ∈ {− + −, − − +, − − −} the extra operation F = H1H3H4 must be applied immediately after
the Hadamard measurement to guarantee error distinguishability (see example in Appendix C). (e) If and only if the FT parallel syndrome
readout (block KFT; see Fig. 23) flags we proceed by measuring the syndrome with single auxiliary qubits (KnFT; see Fig. 24). The recovery
R is chosen from the Hadamard error set (Table III) when any flag of MH is triggered. Otherwise, R is determined by the flag error set
{X3X7, X4X6, Z3Z7, Z4Z6} if a matching syndrome, − + + or + + − for X or Z stabilizers, respectively, is measured, otherwise the standard
Steane code look-up Table I is applied.

Table I. Instead, we may extend the look-up table decoder
to prioritize two-qubit recovery operations when the flag is
triggered. These two-qubit errors make up the so-called flag
error set. By exhaustively placing all single faults on the FT
encoding circuit, we find that only two dangerous data qubit
errors, namely, X1X3 and X4X5, that are not stabilizer equiva-
lent can propagate to the final data qubit state. For example,
they can be caused, respectively, by faults Y1X3 on the last
MS gate and Z4X5 on the fifth MS gate of the non-FT block
in Fig. 7 which also trigger the flag. All other resulting data
qubit errors are, if not stabilizer equivalent to either X1X3 or
X4X5, equivalent to a weight-1 error or a logical Z operator.
The latter acts trivially on the logical zero state that is being
prepared. Additionally, given that the flag is triggered, we find
that the only weight-1 errors that can result on the data qubits
from a single fault are X3, X5, and X6.

The two dangerous errors X1X3 and X4X5 can be distin-
guished by measuring only two additional stabilizers. Their
syndrome will not be confused with the syndromes of the
single-qubit errors because the triggered flag restricts the

number of errors that can occur. A pictorial illustration of
the protocol with stabilizer measurement conditioned on the
classical flag information is shown in Fig. 11(a). For the
correction procedure, the look-up Table II can be applied.

Applying the recovery R2 = X4X5 when measuring the
reduced syndrome (KZ

2 , KZ
3 ) = −+ will not cause a logical

failure because either the X4X5 error is corrected or the product
of error and recovery will be X4X5X5 in case the data qubit
error was X5. The result is the weight-1 error X4 so FT is
respected. From this example, we see that measuring KZ

1 is
not necessary to correct the weight-2 errors. The same holds
if the actual error is X6X7 since it is stabilizer equivalent to
X4X5.

Moreover, we find that measuring only the stabilizer
operator KZ

123 = KZ
1 × KZ

2 × KZ
3 = Z1Z2Z4Z7 is sufficient to

neutralize the dangerous weight-2 errors. As shown in Ta-
ble II, its expectation value is +1 for the correctable weight-1
errors and −1 for both uncorrectable weight-2 errors. By
applying the recovery operation R1 = X7, both errors X1X3

and X6X7 are turned into correctable weight-1 errors X5 and
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TABLE II. Modified look-up table for deterministic Pauli state
preparation. It is used instead of Table I if and only if the flag is
triggered. All errors can be corrected, allowing for a residual weight-
1 error, when measuring either the single stabilizer KZ

123 = Z1Z2Z4Z7

or the two stabilizers KZ
2 = Z1Z3Z5Z7 and KZ

3 = Z2Z3Z6Z7 or all three
stabilizer generators, including KZ

1 = Z4Z5Z6Z7. The recovery R1 is
applied when only KZ

123 is measured. R2 is the recovery operation
when KZ

2 and KZ
3 are measured.

Data qubit error KZ
1 KZ

2 , KZ
3 R2 KZ

123 R1

X1X3 + +− X1X3 − X7

X4X5 + −+ X4X5 − X7

X6X7 + −+ X4X5 − X7

X6 − +− X1X3 + I
X5 − −+ X4X5 + I
X3 + −− X3 + I

X6, respectively. Note that a single auxiliary qubit is sufficient
for syndrome readout since an additional fault happening in
this step—on top of the fault that already happened to trigger
the flag—would render the overall fault configuration to be
of order p2 so FT1 is not violated. The result of these addi-
tional measurements is a deterministic FT way to prepare the
logical zero state of the Steane code. Given the flag has been
triggered, we are able to correct all weight-2 errors possibly
present on the data qubit state by measuring a reduced set of
stabilizers [88]. Of course, it is also possible to measure all
three stabilizer generators and by the full three-bit syndrome
uniquely distinguish all weight-1 and weight-2 errors given in
Table II.

Analogously to the previous scaling analysis, we show the
scaling behavior of the deterministic and nondeterministic FT
Pauli state preparation in Fig. 12. The uniform scaling param-
eter λ of all physical error parameters, including crosstalk,
varies between 0.1 and 3. Both schemes scale quadratically
in this interval due to their FT property. Nonetheless the
nondeterministic scheme, where only nonflagged states are
accepted, has a logical failure rate one order of magnitude
lower than the deterministic schemes where either two or
three stabilizer measurements are performed in case the flag is
triggered. It is ensured that there cannot be another crossover
point at lower values of λ since the vertical offset between
the curves is determined by the coefficient of the quadratic
term. Figure 13 shows the average number of times the non-
deterministic preparation needs to be repeated until the state
is accepted. While for the deterministic scheme this value
is equal to one by construction, we see that for increasing
λ ∈ [0.1, 3] the mean number of necessary repetitions mod-
erately grows from 1.020(1) to 1.563(6) which is feasible
for experimental implementation. The number of repetitions
translates to an increase of required entangling gates, shown
in Fig. 14, from approximately 11 to 17.2 for the nondeter-
ministic protocol and from approximately 11 to 12.5 for the
deterministic protocol on average. In case of a triggered flag,
the deterministic protocol will proceed with just the measure-
ment of KZ

123, requiring four additional MS gates, instead of
repeating the preparation circuit with 11 MS gates.

FIG. 12. Deterministic Pauli state scaling: Uniform scaling un-
der extended noise with a factor λ of all physical error rates for the
FT flag preparation circuit of |0〉L and the deterministic extension
where stabilizers are measured with single auxiliary qubits. For each
of the 105 MC samples, the preparation is repeated until the flag
qubit is clear. The nondeterministic circuit yields lower logical error
rates then the deterministic procedure. Since both scale quadratically,
there will not be a crossover point at lower λ. The lines for measuring
two and three stabilizers lie on top of each other.

We conclude that using the nondeterministic state prepa-
ration protocol is preferable in the examined range of λ and
below since it yields logical failure rates one order of mag-
nitude lower than the deterministic state preparation at the
cost of a moderate number of repetitions, given that the nec-
essary repetition times are permitted by other experimental
constraints.

FIG. 13. Repetition overhead for nondeterministic state prepa-
ration: Averaged number of repetitions until the prepared state is
accepted, i.e., all flags measured as +1. Preparation of the magic
state |H〉L on average needs more trials than the Pauli state |0〉L .
Deterministic state preparation schemes succeed after a single run by
definition. Uncertainties on data points are smaller than the marker
sizes.
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FIG. 14. Entangling gate overhead for FT logical state prepara-
tion: Averaged number of entangling gates needed until the prepared
state is accepted. For the nondeterministic protocols this amounts to
all flags being clear. Deterministic protocols realize different circuit
sequences depending on in-sequence measurement outcomes. The
increase in average MS gate count is moderate for the deterministic
protocols. For the nondeterministic FT magic state preparation the
increase is over two orders of magnitude. It requires fewer MS gates
on average than the deterministic FT magic state preparation protocol
for λ � 0.8. Uncertainties on data points are smaller than the marker
sizes.

2. Logical magic state

The protocol for deterministic FT magic state preparation
has been pointed out in Ref. [5]. We provide a compiled
version into MS gates visualized in Fig. 11(b) and discuss
the expected performance for current and anticipated future
trapped-ion physical error parameters.

After preparing the logical magic state non-fault toler-
antly, we measure the logical Hadamard operator three times,
each involving the use of four flag qubits to distinguish all
possible errors resulting from a fault triggering flags. The
measurement circuit labeled MH is shown in Fig. 11(c) with
the detailed MS compilation given in Fig. 11(d). For the
flag patterns, i.e., combinations of flag qubit measurement
outcomes, f0, f2, f3 ∈ {− + −,− − +,− − −} an additional
operator F = H1H3H4 must be applied to guarantee error
distinguishability. Hadamard-type errors on four data qubits,
which can arise from a single X fault on the measurement
qubit of the circuit in Fig. 11(d), cannot be corrected using
the six-bit syndrome if F were not applied. Triggered by
the aforementioned flag patterns, F transforms a dangerous
error into a lower weight error which can then be corrected
by the subsequent EC block (see an explicit example in
Appendix C).

After each Hadamard measurement, a full round of FT er-
ror correction must be performed before the logical Hadamard
can be measured again. The EC block, shown in Fig. 11(e),
consists of the flag-FT parallel readout circuit (KFT) which
we previously used to discard erroneous states in the non-
deterministic protocol. Now, it is followed by an additional
block of syndrome readout with single auxiliary qubits [KnFT,
compiled with the CNOT decomposition of Fig. 1(c)] in case

FIG. 15. Deterministic magic state scaling: Comparison of de-
terministic and nondeterministic FT magic state preparation for
physical error rates uniformly scaled with parameter λ. The sig-
nificant overhead of the deterministic scheme leads to a logical
failure rate approximately two orders of magnitude larger than
for the nondeterministic scheme at low λ. For the deterministic
scheme we use (1000, 104, 105) samples for the data points at (λ >

0.1, 0.01 < λ � 0.1, λ = 0.01). For the nondeterministic scheme
we use (1000, 104, 105) samples for the data points at (λ > 1, 0.1 <

λ � 1, λ = 0.1).

any flag is triggered. If the flags of MH are triggered and the
syndrome is not trivial we apply a recovery operation accord-
ing to the Hadamard look-up Table III given in Appendix C.
Here the full six-bit syndrome is necessary to identify the
correct recovery operation despite the CSS property of the
Steane code. If all Hadamard flags are clear or the syndrome
is not in the Hadamard look-up table but the parallel readout
circuit KFT yields a triggered flag, we make use of the flag
error set FES = {X3X7, X4X6, Z3Z7, Z4Z6} to correct weight-2
errors of both X and Z type informed by the Z and X syndrome
measured by KnFT, respectively. The flag error set is formed
by all dangerous errors that can result from single faults in the
KFT block that trigger a flag. If the syndromes measured by the
two blocks KFT and KnFT agree, we apply the recovery from
the standard look-up table (Table I). The third EC block can
be omitted in case the third Hadamard measurement yields a
+1 measurement outcome and no flags are triggered.

In the end, a logical YL correction is applied dependent on
the three Hadamard measurement outcomes. It is applied if the
three consecutive Hadamard measurements are either − − −
or + − −, otherwise no additional correction is applied. These
corrections take into account logical operators that can arise
from single faults in the non-FT preparation circuit (Fig. 8)
already. A detailed derivation is given in the Appendix of
Ref. [5].

As for the logical zero state, we show the comparison of
logical failure rates achieved by the deterministic and non-
deterministic protocol over the uniform scaling range λ ∈
[0.1, 3] and subjected to extended noise in Fig. 15. While the
nondeterministic scheme scales quadratically over the entire
range of λ, the deterministic scheme just transitions towards
quadratic scaling at low physical error parameters. For λ � 1
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TABLE III. Look-up table for flag-FT measurement of the
logical Hadamard operator in the deterministic scheme given in
Fig. 11(b). +1 and −1 measurement outcomes of flag and syndrome
auxiliary qubits are represented as 0 and 1, respectively. The full
six-bit syndrome needs to be considered in order to choose the
appropriate recovery operation R in contrast to the situation where
X - and Z-type recoveries are applied independently in standard EC
on the Steane code.

f0, f1, f2, f3 KX
1 , KX

2 , KX
3 KZ

1 , KZ
2 , KZ

3 R

1100 000 001 X2

1110 000 001 X2

1010 000 001 X2

1011 000 001 X2

1100 001 000 Z2

1110 001 000 Z2

1010 001 000 Z2

1011 001 000 Z2

1000 000 011 X3

1000 011 000 Z3

1000 000 111 X7

1000 111 000 Z7

1000 000 001 X1X3

1000 011 010 X1Z3

1000 010 011 X3Z1

1000 001 000 Z1Z3

1100 110 100 X4Z5

1100 100 110 X5Z4

1000 000 010 X6X7

1100 000 010 X6X7

1000 111 101 X6Z7

1100 111 101 X6Z7

1000 101 111 X7Z6

1100 101 111 X7Z6

1000 010 000 Z6Z7

1100 010 000 Z6Z7

1000 010 001 X1X3Z1

1000 001 010 X1Z1Z3

1000 000 101 X1X3X4

1010 000 101 X1X3X4

1000 011 110 X1X4Z3

1010 011 110 X1X4Z3

1000 010 111 X3X4Z1

1010 010 111 X3X4Z1

1000 001 100 X4Z1Z3

1010 001 100 X4Z1Z3

1000 100 001 X1X3Z4

1010 100 001 X1X3Z4

1000 111 010 X1Z3Z4

1010 111 010 X1Z3Z4

1000 110 011 X3Z1Z4

1010 110 011 X3Z1Z4

1000 101 000 Z1Z3Z4

1010 101 000 Z1Z3Z4

1110 000 100 X5X6X7

1010 000 100 X5X6X7

1100 000 100 X5X6X7

1110 101 001 X5X7Z6

1010 101 001 X5X7Z6

1100 101 001 X5X7Z6

1110 110 010 X6X7Z5

TABLE III. (Continued.)

f0, f1, f2, f3 KX
1 , KX

2 , KX
3 KZ

1 , KZ
2 , KZ

3 R

1010 110 010 X6X7Z5

1100 110 010 X6X7Z5

1110 011 111 X7Z5Z6

1010 011 111 X7Z5Z6

1100 011 111 X7Z5Z6

1110 111 011 X5X6Z7

1010 111 011 X5X6Z7

1100 111 011 X5X6Z7

1110 010 110 X5Z6Z7

1010 010 110 X5Z6Z7

1100 010 110 X5Z6Z7

1110 001 101 X6Z5Z7

1010 001 101 X6Z5Z7

1100 001 101 X6Z5Z7

1110 100 000 Z5Z6Z7

1010 100 000 Z5Z6Z7

1100 100 000 Z5Z6Z7

1000 101 010 X6X7Z6

1000 010 101 X6Z6Z7

1100 011 001 X5X7Z5Z6

1100 001 011 X5X6Z5Z7

1000 100 101 X1X3X4Z4

1000 111 110 X1X4Z3Z4

1000 110 111 X3X4Z1Z4

1000 101 100 X4Z1Z3Z4

the advantage in logical failure rates of the nondeterministic
over the deterministic scheme is as large as approximately two
orders of magnitude. This is due to the gate overhead that the
deterministic scheme requires. On the other hand, employing
the nondeterministic scheme demands a repetition overhead,
which we show in Fig. 13. Although at low λ the mean
number of repetitions until the FT magic state is accepted
approaches 1, at scaling factors λ = 1 and λ = 3 we need
approximately five and 63 repetitions on average, respectively.
From Fig. 14, it is clear that the number of necessary MS gates
also increases drastically through the repetition procedure.
While the nondeterministic protocol requires only 56 MS
gates at λ = 0.1 on average, the deterministic protocol uses
on average approximately 113 MS gates at λ = 0.1 and 198
MS gates at λ = 3 due to more frequent flag events and thus
more realizations of the full EC sequence. Due to the larger
number of repetitions at λ = 3 the mean number of MS gates
increases to a large value of approximately 3010. At λ = 1 the
deterministic protocol requires approximately 182 MS gates
on average; slightly less then the approximately 232 MS gates
needed on average for the nondeterministic protocol.

The trade-off between deterministic and nondeterministic
protocols includes on the one hand preparing the logical state
with high fidelity while on the other hand also keeping accep-
tance rates high or equivalently keeping the required number
of circuit repetitions sufficiently low. For the FT magic state
preparation the trade-off between logical fidelity and gate
overhead is more pronounced than for the Pauli state. In order
to use the nondeterministic protocol in an experimental real-
ization and benefit from its low logical failure rate, one must
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be able to tolerate the potentially large repetition overhead for
the algorithm aimed to be performed. When the deterministic
protocol is used, the runtime of a quantum algorithm can
be bounded at the expense of the large gate overhead which
deteriorates the resulting logical failure rate compared to the
nondeterministic protocol.

For scale up to multiple logical qubits, scheduling aspects
may become relevant for the specific physical architecture at
hand. Deterministic logical state preparation can be performed
in parallel, if the experiment permits, and all logical states will
be prepared after constant time. When L logical qubits are pre-
pared nondeterministically, the waiting time until all logical
qubits are verified is limited by the logical qubit which needs
the most repetitions until accepted. On average, preparing
the qubits nondeterministically is advantageous if the average
number of repetitions (see Fig. 13) for a given set of physical
error parameters aλ leads to a smaller total state preparation
time aλtn < td , assuming that a single trial takes time tn, than
using the deterministic scheme taking time td . Even if one
is lacking parallel operation capabilities, the waiting time of
the other L − 1 logical qubits—while one logical qubit is
being prepared—does not need to be detrimental to the overall
fidelity: An additional round of QEC can be performed on
each logical qubit before feeding it into a subsequent logical
building block. Moreover, it is not required with our protocols
that successful state preparations coincide in time.

Suppose that we are capable of preparing L logical qubits,
using the nondeterministic Pauli state preparation protocol,
when we need only k accepted logical qubits in order to use
them to run a quantum algorithm. With flag rate f , the number
of logical qubits that are rejected due to flag events after a
runs of the nondeterministic encoding circuit is L f a. As a
consequence, the number of logical qubits L needed to accept
k logical qubits on average at flag rate f after a trials is given
by

k = L(1 − f a) (13)

and the number of runs a needed to accept k out of L logical
qubits on average at flag rate f reads

a = log(1 − k/L)

log f
. (14)

Since all logical qubit preparations are independent from
another, the probability P�k that at least k out of L logical
qubits are prepared correctly after a runs is given by the cumu-
lative binomial distribution with success probability 1 − f a:

P�k =
L∑

j=k

(
L

j

)
(1 − f a) j ( f a)L− j (15)

= 1 −
k−1∑
j=0

(
L

j

)
(1 − f a) j ( f a)L− j (16)

= 1 −
k−1∑
j=0

B(L, j, 1 − f a) (17)

= 1 − I f a (L − k + 1, k), (18)

where we use the regularized incomplete Beta function I
[89,90]. We can extract the number of necessary qubits L or

the number of circuit runs a to obtain k accepted qubits with
a desired probability P�k by numerical inspection of Eq. (18).

It is advantageous to use the nondeterministic preparation
procedure as long as after at most a∗ = �td/tn	 preparation
attempts the number of accepted qubits k, either on average
or with probability P�k , is sufficient to perform the desired
quantum algorithm. For our logical Pauli state preparation
schemes, we have td/tn = 15/11 ≈ 1.4 when using the number
of entangling gates as a proxy for the circuit execution time.
So if more than a∗ trials were needed, there would be no sav-
ings in the number of entangling gates over the deterministic
scheme anymore. In Fig. 16 we show the number of accepted
logical qubits k given that L logical qubits can be prepared
and highlight which of the two schemes is advantageous in
terms of preparation time. While the deterministic scheme
will always prepare k = L logical qubits, Eqs. (13) and (18)
provide the expected number on average or, here, with a 95%
probability P�k , which we show for the Pauli state at flag
rate f = 0.17 in Fig. 16(a). For the logical magic state, the
large number of MS gates used by the deterministic scheme
on average at λ = 1 allows one to run up to four trials of
the nondeterministic scheme since the fraction of entangling
gates is td/tn = 232/48 ≈ 4.8. The expected number of accepted
logical magic states after up to four runs is compared to the
deterministic scheme in Fig. 16(b).

V. INFLUENCE OF ENTANGLING CROSSTALK ON
LOGICAL STATES

We have seen in the previous discussion of FT circuits
that crosstalk in general does not respect the FT property
and thus can lead to linear scaling effects in the logical
failure rates detrimental to the FT property of, otherwise,
FT circuits. Crosstalk on single-qubit gates does not cause
correlated faults but mere single-qubit faults on neighboring
qubits. After entangling gates however, crosstalk fault oper-
ators of Pauli weight-2 can potentially propagate to cause
uncorrectable weight-2 errors at the end of the circuit. Pre-
serving the quadratic scaling behavior in the logical failure
rate is thus essential when aiming for advantage of FT cir-
cuits over their non-FT counterparts or physical qubits, which
scale linearly. In this section we demonstrate that, for the
FT Pauli preparation circuit, it is actually possible to find
circuit implementations which show quadratic scaling of their
logical failure rate and thus respect FT despite the presence of
crosstalk. Our argument is derived from the CSS property of
the Steane code.

As long as not more than a single fault occurs, accepted
states from the FT Pauli state preparation circuit are guar-
anteed to be the correct |0〉L state up to a single correctable
error. XX -type crosstalk on a target-neighbor location t, n of
an MS gate acting on target qubits t1 and t2 is described by the
channel

Exct(ρ) = (1 − pc2 )ρ + pc2 Xt XnρXt Xn. (19)

In the presence of XX -type crosstalk fault tolerance can be
uphold if all XX faults can be made to propagate to cor-
rectable errors at the end of the circuit [91]. Since the local
rotations that stem from the CNOT decomposition into MS
gates rotate X -fault operators on the control qubit to Z faults
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FIG. 16. Preparation time advantage: Nondeterministic logical state preparation schemes (crosses) have a preparation time advantage over
the deterministic schemes (small circles) as long as the number of entangling gates needed until k out of L logical qubits are accepted is
lower than for the deterministic scheme. The deterministic schemes always prepare k = L logical qubits (solid black lines). The boundaries
between regimes of advantage of either scheme (dashed lines with crosses) are calculated at our respective flag rates at λ = 1 using Eq. (18)
with P�k � 95% and a = a∗ = �td/tn	. In the region above this line using the deterministic scheme is advantageous since the nondeterministic
scheme would take more MS gates for the same result of k logical qubits. (a) Pauli state: Running the nondeterministic scheme twice already
takes 2 × 11 MS gates, which is more than the 15 MS gates needed for the deterministic scheme. Thus we compare the expected number of
accepted logical qubits k at our flag rate f = 0.17 when L logical qubits can be prepared for one circuit run of either scheme. For example, to
prepare at least three out of nine logical qubits correctly the nondeterministic scheme is sufficient (star marker) while the deterministic scheme
should be used if, e.g., at least 11 out of 13 logical qubits need to be accepted (diamond marker). (b) Magic state: At our flag rate f = 0.8,
we can run the nondeterministic magic state preparation at most �232/48	 = 4 times and stay below the number of entangling gates used by the
deterministic scheme on average. Regions of accepted logical qubit number after one through four runs are shown in shades of orange.

(see Fig. 7), some of the resulting error operators may be
correctable because a single Z and a single X error are cor-
rectable distinctly in the Steane code. An example of this
effect can be seen for an X2X7 fault after the second MS gate
in Fig. 17, which becomes an Z2X7 error at the end of the
circuit. The Steane code can correct Z2 and X7 independently.
Consequentially, it is desirable to choose a qubit mapping of
the FT encoding circuit that reduces the number of neighbor
locations around the control qubits and allows for detection
of dangerous crosstalk faults by the flag verification qubit.
Robustness against crosstalk faults via optimal qubit mapping

FIG. 17. Crosstalk-resistant FT Pauli state preparation: There is
no single XX -type fault placed at any crosstalk location which causes
an output state with X error of weight greater than one and does
not also trigger the flag. The Steane code is capable of correcting a
weight-1 X and Z error each. XX faults are prevented by local rota-
tions from resulting in a weight-2 error. An example of such a fault on
the second MS gate is depicted by the red eight-cornered stars. The
resulting two weight-1 errors are Z2 and X7. The previously (Fig. 7)
dangerous X3X5 fault after the fifth MS gate (blue 12-cornered stars)
now triggers the flag.

has been shown before by searching for Hamiltonian paths
in a qubit mapping graph for a comparative code study with
realistic ion trap noise [52].

We distinguish these types of circuits by calling them
“crosstalk-resistant” (CTR) and “non-crosstalk-resistant”
(non-CTR). Qubit indices can be relabeled to obtain a CTR
circuit for FT preparation of the |0〉L state using MS gates
as given in Fig. 17. After relabeling, the new stabilizers have
support on qubits (1, 4, 6, 7), (2, 5, 6, 7), and (3,4,5,7). The
X3X5 crosstalk fault after the fifth MS gate, discussed as an
example in Sec. IV, will now trigger the flag as opposed to
the non-CTR circuit in Fig. 7 so that the output state with the
dangerous error Z3X5X7 will be discarded. A CTR circuit for
FT magic state preparation was not found.

In Fig. 18 we present the CTR property of the Pauli circuit
and compare its logical failure rate to the nondeterministic,
non-CTR FT Pauli state preparation from Fig. 10(a). Extended
noise is applied to both circuits. While, as before, there is no
visible distinction between logical failure rates in an interval
of approximately λ ∈ [10−1, 101], the non-CTR circuit tran-
sits from quadratic scaling to a linear scaling for λ � 10−2

because crosstalk destroys the FT property. The CTR circuit
continues to scale quadratically for all λ → 0 under the in-
fluence of XX -type crosstalk on MS gates. XX -type crosstalk
is only a valid description of the actual physical processes if
crosstalk phases are zero on all ions.

We have shown in Fig. 5 that in reality the crosstalk
phases, although constant over time, vary over a large range
of angles. To take this fact into account, we replace the XX-
type crosstalk Exct by the phase-averaged crosstalk channel
[Eq. (7), derived in Appendix A] which applies fault operators
XX, XY, Y X , and YY with equal probability to each crosstalk
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FIG. 18. Crosstalk-resistant Pauli state scaling: Uniform scaling
with a factor λ of all physical error parameters under XX -type
crosstalk (XX) and phase-averaged crosstalk (PA) in the FT Pauli
state preparation circuit with an XX -crosstalk-resistant (CTR) and
non-crosstalk-resistant (non-CTR) qubit mapping. Lines for the two
state preparations with PA overlap. For numerical simulations, we
employ direct Monte Carlo (MC, cross markers) and subset sampling
(SS, triangle markers) in their preferential domain of physical error
rates. The experimentally measured value (star marker) lies at λ = 1.
In this regime of physical error rates, all four curves coincide within
their confidence intervals. At lower values of λ crosstalk becomes
a dominant source of failure causing linear scaling if CTR does not
hold. Error rates of physical operations are shown for comparison
(gray lines without markers) as in Fig. 10. For each MC data point
and subset failure rate we sample at least 100 times or until the
uncertainty of the respective logical failure rate estimator is below a
relative error of 0.5 but at most 104 times. All subsets up to wmax = 3
are taken into account for SS.

location. In Fig. 18 we show the scaling behavior for the same
two circuits under the influence of the phase-averaged (PA)
crosstalk channel. Not only is the logical failure rate larger
than for XX -type crosstalk alone. Now both the non-CTR and
CTR circuit scale linearly at low λ because the XY - and YY -
type crosstalk faults can cause logical failures. The distinction
between the two circuits is barely visible anymore. However,
at λ = 1 all four circuit models agree with the experimentally
measured value of logical infidelity.

To conclude this section, we note that the existence of
the CTR Pauli encoding circuit is a special case which does
not generalize to arbitrary quantum circuits. While fundamen-
tally valid, the CTR characteristic cannot be upheld in our
experimental setting since crosstalk phases will always mix
the different X - and Y -type contributions even if they are
constant over long times. As a consequence, it can not be
guaranteed that the quadratic scaling behavior of FT circuits
in the presence of crosstalk does actually lead to an advantage
over physical qubits; minimization of crosstalk in physical
operations is imperative.

VI. QUANTUM STATE FIDELITY OF LOGICAL QUBITS

While the logical fidelity is a good quantity to assess the
degree of successful state preparation as a measure of op-

erational performance in QEC, in this section we assess the
quantum state of the logical qubit in a more general way by
calculating its quantum state fidelity [70].

The quantum state fidelity of a stabilizer state is defined as
the mean of expectation values of all operators that form the
stabilizer group Wk ,

F (ρt , ρ) = 1

128

128∑
k=1

〈Wk〉, (20)

with a target state ρt = |t〉 〈t | and ρ = |ψ〉 〈ψ | a stabilizer
state such that Wk |ψ〉 = ± |ψ〉. The stabilizer group of the
Steane code contains 128 = 27 stabilizer operators and is
generated by the stabilizer generators in Eq. (8) that define
the logical qubit. The code space population pCS is defined
analogously but involves only averaging over the 64 code
space stabilizer expectation values

pCS = 1

64

64∑
k=1

〈Wk〉 (21)

and contains no logical operators which would fix the logical
state within the code space [8]. More detail on the derivation
of the quantum state fidelity of stabilizer states is given in
Appendix D.

Since the largest physical error rate in our model is the
infidelity of the MS gate, we expect the MS gate dynamics
to dominantly influence the quantum state fidelity and, as a
consequence, the logical failure rate. Thus, in the following,
we compare the quantum state fidelity for noisy logical qubit
preparation using depolarizing noise versus incoherent over-
rotation noise on MS gates. The MS gate is a rotation about the
two-qubit XX axis, and it would thus be consistent to model
MS gate noise by the overrotation channel given by Eq. (A62).
The depolarizing noise channel is often used instead due to its
general, hardware-agnostic structure but by introducing faults
of all Pauli types it might overestimate the effect of MS gate
errors compared to overrotations. It was previously expected
that overrotation is the more accurate noise model [51].

The table below shows values for the quantum state fidelity
F and code space population pCS with 95% confidence inter-
vals of a single logical qubit in the |0〉L state prepared by the
FT circuit in Fig. 7:

Noise F pCS

Depolarizing 82.63(3)% 82.62(4)%
Overrotation 86.18(3)% 86.20(4)%

Experiment 82.7(11)% 83.1(15)%

In Fig. 19 we compare experimental data to numerical
simulations with the depolarizing noise model as described
before for a single logical qubit with MS gate errors
modeled as either depolarizing or overrotation noise. For
each of the stabilizer operators we determine the devia-
tion

√
(〈Si〉exp − 〈Si〉sim)2 of the simulated expectation value

〈Si〉sim with both noise models to the experimentally measured
expectation value 〈Si〉exp. We observe that the distribution of
deviations is very similar for both noise channels. While most
stabilizer expectation values deviate little from the experimen-
tal values, individual stabilizer expectation value deviations
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FIG. 19. Stabilizer estimation under different MS noise models:
Distributions for depolarizing (blue) and overrotation (red) noise
models of the deviation

√
(〈Si〉exp − 〈Si〉sim)2 of all 128 stabilizer

expectation values of the logical qubit in simulation to experiment.
Each bin has a width of 2%. Mean values which correspond to
quantum state fidelities and code space population for both noise
models are indicated as vertical lines and deviate from experimental
values by approximately 6%. Individual stabilizer expectation value
estimates differ to up to 24%. All simulation data are generated by
direct MC sampling until 105 states are accepted. Each stabilizer has
been measured 100 times in the experiment.

can be as high as approximately 20% for depolarizing noise
and 24% for overrotation noise. The averaged deviations
(RMS) for all 64 or 128 expectation values, i.e., for the
code space population and quantum state fidelity, respectively,
are 6.0(15)% and 6.6(11)% with overrotation noise but for
depolarizing noise yield the lower values of 5.1(15)% and
5.7(11)%.

It is evident that incoherent overrotation noise does not
provide a more accurate description of MS gate errors than
depolarizing noise for the circuits used in our experiment.
Respecting the FT property of the state preparation circuit on
the logical level appears to be the more relevant characteristic
of noise than its microscopic structure. This is in stark contrast
to the detrimental effect that crosstalk can exert when it does
not respect fault tolerance. The effect of crosstalk strongly de-
pends on the microscopic structure which differs between the
XX type and phase average model discussed in the previous
section. We stress that the logical fidelity is an appropriate
quantity to compare the agreement of experimental data to
noise simulations and that computing the full quantum state
fidelity does not provide additional information about the
QEC procedure.

VII. CONCLUSIONS and OUTLOOK

We provided a detailed numerical study and analysis of
future potential for FT universal gate set implementations.
Incoherent Pauli noise simulations suggest that reaching
thresholds of FT advantage over physical qubits need im-
provements on physical error rates of less than an order of

magnitude. Currently the logical error rate is limited pre-
dominantly by entangling gate errors in the experimental
setup under consideration in this work. Crosstalk on Mølmer-
Sørensen gates is not a substantial source of error for the
advantage of FT over non-FT circuit implementation in our
ion trap architecture at current noise levels. However, we
give a crosstalk resistant qubit mapping for FT Pauli state
preparation which keeps scaling quadratically under XX -type
crosstalk as physical error rates are scaled to zero opposed
to the usual circuits where crosstalk typically breaks the
FT property. We showed that the microscopic structure of
crosstalk affects the scaling of logical error rates.

Therefore choosing a different set of physical gates could
also make available crosstalk resistant circuits for the realiza-
tion of other logical building blocks. Furthermore, crosstalk
errors could be suppressed by utilizing inherently crosstalk
insensitive gate operations like composite pulses [92,93], or
active suppression schemes, where additional laser fields are
applied to the qubit register that destructively interfere with
unwanted leakage light at neighboring ion positions. Exploit-
ing the fact that for each ion a global phase can be freely
chosen might allow for crosstalk-resistant qubit mappings
even in the case of random but constant crosstalk phases.
However, this method does not provide enough degrees of
freedom to directly control the effective crosstalk phase for
both neighbors of all qubits in the register. Further investi-
gations are needed to clarify if crosstalk resistant mappings
for various logical building blocks can be found using this
technique.

Also, we have found that deterministic state preparation
schemes for Pauli and magic state preparation do not out-
perform nondeterministic ones at current physical error rates
and are not expected to do so even with improvements on
physical error rates due to their larger gate count. The repe-
tition overhead needed for nondeterministic state preparation
is moderate for both the Pauli and magic state at current noise
levels.

Our analysis validates depolarizing noise as an appropriate
effective model for FT logical state preparation in the ion
trap system from Ref. [32]. Flag circuits are recognized as
a promising paradigm to reach the break-even point where FT
circuits will outperform physical qubits [15]. Not only is the
depolarizing noise model sufficient to predict logical failure
rates but also the average over stabilizer expectation values for
a single logical qubit initialized to its logical zero state. Indi-
vidual stabilizer expectation values can be estimated to about
24% relative uncertainty. The detailed crosstalk investigation
provided in this work illustrates the value of considering
aspects specific to the physical architecture realizing the quan-
tum computer. We point out that for long protocols with deep
circuits such as the deterministic FT magic state preparation
scheme, coherent errors might build up and cause an addi-
tional source of logical failure. The effect of coherent noise to
the logical failure rate of such circuits is a subject for further
studies.

In the future, effective noise models for different quantum
computing architectures and logical building blocks will aid
in the characterization of FT universal quantum computers.
Simulating large distance logical qubits can help to better
understand relevant error processes and facilitate practical
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realization of error-corrected logical qubit operations below
the pseudothreshold.

The data underlying the findings of this work are available
at [94]. All codes used for data analysis are available from the
corresponding author upon reasonable request.
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APPENDIX A: NOISE MODEL DETAILS

In the following, we provide more details for the noise
model used to perform the simulations of faulty quantum
circuits presented in Sec. III B. The four independent physical
error rates on single-qubit gates, two-qubit gates, and qubit
initialization and measurement are the sources of error in the
simulations accompanying the experimental FT universal gate

set realization [14]. For the extended noise model, we also
include dephasing noise on idling qubits as well as crosstalk
on single- and two-qubit gates. For the latter, we provide two
different descriptions, namely as a coherent noise channel and
as an incoherent Pauli channel. Overrotations on Mølmer-
Sørensen (MS) gates are also considered in both a coherent
and incoherent model. The derivation of generalized crosstalk
noise on gates with arbitrary laser phase, Eqs. (6) and (7), is
the main focus of this Appendix.

The noise channels we state below are examples of quan-
tum operations E which map an initial qubit state ρ to a final
state ρ ′ = E (ρ) and thus allow to formalize evolution of a
state under noise. We may express E as a Kraus map

E (ρ) =
∑

i

KiρK†
i , (A1)

where the Kraus operators Ki describe the noise on ρ.
As discussed in Sec. III B, all rotation axes of physical

gate operations are parametrized by the phase(s) of the re-
spective qubit laser(s). In the following, we elaborate on the
realization of single- and two-qubit gate rotations about axes
parametrized by the laser phase(s) which we put to use for
the FT magic state preparation circuit in Fig. 9. It is compiled
from a circuit built from CNOT gates to a circuit containing
only MS gates. The compiled circuit then contains single-
qubit Z rotations which need not be performed physically in
the ion trap system, e.g., by AC Stark shifts. All rotation axes,
and therefore laser phases, for subsequent gates are changed
in order to propagate a Z rotation until the end of the circuit
[40]. Here they can be accounted for in software (and when
measuring in the Z basis they can be omitted entirely). In
order to take advantage of this, we need to allow for different
phases ϕ1 and ϕ2 on the MS target ions and vary the phase
ϕ for single-qubit rotations. We now give a generalization of
the standard Pauli-type single- and two-qubit rotations, also
including the case of crosstalk. The standard Pauli X and Y
gates and the XX -type MS gate shown in Fig. 1(b) will be
recovered as special cases from this general discussion.

1. Single-qubit gates

Single-qubit rotations are parametrized as a unitary evolu-
tion with the operator

Rϕ (θ ) = exp

(
−i

θ

2
σϕ

)
, (A2)

σϕ = X cos ϕ + Y sin ϕ, (A3)

where σϕ describes the rotation axis in the equatorial plane
of the Bloch sphere. For example, one recovers the X (Y )
gate for ϕ = 0(π/2) and θ = π . With ϕ = π/4 the resulting
spin operator is σπ/4 = X+Y√

2
, implementing a non-Clifford

rotation.
Crosstalk occurs on gates when the laser light intended

to shine only on ions in order to perform a qubit rotation
cannot be focused tightly enough so that a finite electric field
is at the position of a nontargeted ion. Then neighboring ions
also receive a fraction of residual laser light and the rotation
intended to the gate ions is partly performed as well on the
neighbor ions. The coupling of the laser field �E to the electric
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quadrupole of the ion state is measured by the Rabi frequency

. The Rabi frequency 
 is proportional to the gradient of the
electric field at the location of the neighbor ion. We assume
that the main contribution to the gradient of the electric field
is given by the longitudinal change in electric field of the
electromagnetic wave. Therefore the gradient is proportional
to the amplitude of the electric field amplitude. Consequently
also the Rabi frequency on a neighbor ion 
n is proportional
to the electric field amplitude at the location of the neighbor
ion. Since the rotation angle θ of the single-qubit gate is given
by θ = 
t , where t is the time the laser light is on, the rotation
angle on the neighbor qubit θn is determined by the crosstalk
ratio ε = 
n/
 via

θn = εθ. (A4)

In our simulations, we assume an average crosstalk ratio of
ε = 1 × 10−2.

For single-qubit crosstalk, the neighboring ions to the tar-
get ion, where a rotation about θ shall be performed, see
residual laser light which causes the crosstalk rotation of angle
εθ . The rotation on each neighbor location is

Rϕ (εθ ) = exp

(
−i

εθ

2
σϕ

)
. (A5)

The rotation operator Rϕ (εθ ) acts on a single-qubit density
matrix ρ like

E (ρ) = Rϕ (εθ ) ρ R†
ϕ (εθ )

= cos2 εθ

2
ρ + sin2 εθ

2
(σϕρσϕ ) + i

2
sin εθ [ρ, σϕ]

= cos2 εθ

2
ρ + sin2 εθ

2
[cos2 ϕXρX + sin2 ϕY ρY

+ cos ϕ sin ϕ(XρY + Y ρX )]

+ i

2
sin εθ [ρ(X cos ϕ + Y sin ϕ)

− (X cos ϕ + Y sin ϕ)ρ]. (A6)

In order to efficiently simulate the above coherent noise chan-
nel E in a stabilizer simulation, we now perform the Pauli

twirling approximation (PTA) [95–99] to obtain the (approxi-
mate) incoherent channel of the form

Ẽ (ρ) = 1

4

∑
P∈P

PE (PρP)P (A7)

with P = {I, X,Y, Z}. Each term in the sum of Eq. (A7) of
the channel Ẽ (ρ) reads

PE (PρP)P = cos2 εθ

2
ρ + sin2 εθ

2
PσϕPρPσϕP

+ i

2
sin εθ [ρ, PσϕP] (A8)

for any Pauli matrix P ∈ P . With the identities

IσϕI = X cos ϕ + Y sin ϕ, (A9)

XσϕX = X cos ϕ − Y sin ϕ, (A10)

Y σϕY = −X cos ϕ + Y sin ϕ, (A11)

ZσϕZ = −(X cos ϕ + Y sin ϕ), (A12)

we can calculate the twirled channel. We calculate the sum
over the Paulis for each of the three terms in Eq. (A8) sepa-
rately to find the Pauli twirled channel

Ẽ (ρ) = cos2 εθ

2
ρ + sin2 εθ

2
(cos2 ϕXρX + sin2 ϕY ρY )

(A13)

≡ (1 − pc1 )ρ + pc1 [rxXρX + (1 − rx )Y ρY ], (A14)

where we define the physical error rate as before but also in-
troduce the phase ratios rx = cos2 ϕ and ry = 1 − rx = sin2 ϕ.
All terms in the commutator and the off-diagonal terms in
the sin2 term cancel. This directly corresponds to taking only
the diagonal terms of the process matrix χ parametrizing the
coherent channel of Eq. (A6) in the Pauli basis

χ =

⎛
⎜⎜⎜⎜⎝

cos2 εθ/2 i/2 sin εθ cos ϕ i/2 sin εθ sin ϕ 0

−i/2 sin εθ cos ϕ sin2 εθ/2 cos2 ϕ sin2 εθ/2 cos ϕ sin ϕ 0

−i/2 sin εθ sin ϕ sin2 εθ/2 cos ϕ sin ϕ sin2 εθ/2 sin2 ϕ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A15)

As an example for crosstalk on a single-qubit Pauli gate,
consider the coherent rotation about a Pauli axis σ ∈ {X,Y }
(realized via ϕ ∈ {0, π/2}) as described by the operator

Rσ (θ ) = cos
θ

2
− i sin

θ

2
σ. (A16)

With a laser beam that affects three qubits, the target
ion t and its two neighbor ions n1(t ) and n2(t ) that are
subjected to a fraction ε of the laser electric field, the to-
tal rotation operator is the product of three single-qubit

rotations

R(n,t )
σ (θ ) = exp

(
−i

θ

2
σt

)
exp

(
−i

εθ

2
σϕn1 (t )

)

× exp

(
−i

εθ

2
σϕn2 (t )

)
, (A17)

where the rotation axes of the neighbor ions are determined
by the Pauli operators σϕn1 (t ) and σϕn2 (t ) independently from the
Pauli operator on the target ion. Let us assume that the phase
on neighbor n1(t ) is ϕn1(t ) = π/2 so that a Y rotation will
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be performed. The corresponding rotation operator transforms
the state ρ like

R(n1 )
Y (θ ) ρ R(n1 )

Y (θ )† = exp

(
−i

εθ

2
Yn1

)
ρ exp

(
+i

εθ

2
Yn1

)

= cos2 εθ

2
ρ + sin2 εθ

2
Yn1ρYn1

+ i

2
sin εθ [ρ,Yn1 ]. (A18)

Performing the PTA to this transformation amounts to ne-
glecting the third term containing the commutator. The
Pauli-twirled channel is then an incoherent error channel of
the form

E (ρ) = (1 − pc1 )ρ + pc1Y ρY (A19)

for the respective neighbor ion location and the probability

pc1 = sin2 εθ

2
(A20)

of applying the crosstalk fault operator Y .
Since we observe that the phases in Fig. 5 are distributed

across the whole interval of all possible values ϕ ∈ [0, 2π ],
we use ∫ 2π

0
dϕ cos2 ϕ =

∫ 2π

0
dϕ sin2 ϕ = π (A21)

to average over the crosstalk phase ϕ in Eq. (A13):

〈Ẽ〉ϕ (ρ) = (1 − pc1 )ρ

+ pc1

2π

∫ 2π

0
dϕ (cos2 ϕXρX + sin2 ϕY ρY ).

(A22)

From this we obtain the incoherent noise channel

Ec1 (ρ) = (1 − pc1 )ρ + pc1

2
(XρX + Y ρY ), (A23)

which we use in our numerical simulations.
Note that for this channel the physical crosstalk error rate

pc1 = pc1 (θ ) depends on the rotation angle of the gate as
opposed to the depolarizing or our dephasing channel. The
quantum circuits in this work contain rotation angles θ ∈
{π, π/2, π/4} for which we list the approximate probabilities
according to Eq. (A20) in the table below:

Rotation angle θ Physical error rate pc1

π 2.5 × 10−4

π/2 6.2 × 10−5

π/4 1.5 × 10−5

For the incoherent channel, both neighbor ions n1 and n2

have their own independent single-qubit crosstalk error chan-
nel.

2. MS gates

The two-qubit entangling gate in our trapped-ion archi-
tecture is the MS gate. We now provide a derivation of our

noise model for crosstalk on MS gates based on the gate
Hamiltonian. The Hamiltonian of the MS gate reads

H (t ) = H0 + Hint(t ), (A24)

H0 =
Q∑

j=1

ωeg,0

2
σz, j + ν

(
a†a + 1

2

)
, (A25)

Hint(t ) =
Q∑

j=1


 j (t )

2
(ei(�k1�x j−(ωeg,0+δ)t−ϕ j )

+ ei(�k2�x j−(ωeg,0−δ)t−ϕ j ) + H.c.)(σ+
j + σ−

j ), (A26)

with σ±
j = (Xj ± iYj )/2. Here Q is the number of all ions

that laser light shines on and the 
 j are their respective Rabi
frequencies. Using �ki�x = ηi(a† + a), we operate in a regime
where the detuning δ � ωeg,0 is much smaller than the qubit
frequency so that the Lamb-Dicke parameters η1, η2 ≈ η are
assumed to be the same for both target ions 1 and 2. With the
rotated spin operator

σϕ j = Xj cos ϕ j + Yj sin ϕ j (A27)

we can write the sum over the ions explicitly as
MS gate target ions t ′ ∈ {1, 2} and neighbor ions
n ∈ {n1(1), n2(1), n1(2), n2(2)} with their Rabi frequencies

t ′ (t ) = 
 and 
n = ε
:

Hint(t ) ≈ −η
(ae−iεt + a†eiεt )

(∑
t ′

1

2
σϕt ′ +

∑
n

ε

2
σϕn

)
,

(A28)

where ε = ν − δ. The final form of the Hamiltonian can now
be expressed as

Hint(t ) = −η
(ae−iεt + a†eiεt )S�ϕ (A29)

with the collective spin operator S�ϕ = 1
2σ�ϕ where �ϕ =

(ϕt1 , ϕt2 , ϕn1(1), ϕn2(1), ϕn1(2), ϕn2(2) ) contains all target and
neighbor ion phases.

From this Hamiltonian follows the time evolution

U (t ) = D[�(t )S�ϕ] exp
[
iθ (t )S2

�ϕ
]

(A30)

with �(t ) = ∫ t
0 γ (t ′) dt ′ and θ (t ) = Im

∫ t
0 γ (t ′)dt ′ ∫ t ′

0
γ ∗(t ′′) dt ′′ where γ (t ) = iη
eiεt and the displacement
operator D(α) = exp(αa† − α∗a) ∼ 1 + (αa† − α∗a) for
which D(α)D(β ) = D(α + β ) exp[i Im(αβ∗)] holds. The
parameters of the gate �(t ) and θ (t ) can be adjusted
experimentally to realize the MS gate [100].

The collective spin operator contains both the target and
their nearest-neighbor ions

S�ϕ = S�ϕ|targets + S�ϕ|neighbors (A31)

= 1
2

[
σϕ1 + σϕ2 + ε

(
σϕn1 (1) + σϕn2 (1) + σϕn1 (2) + σϕn2 (2)

)]
,

(A32)

where the latter have their Rabi frequencies suppressed by the
crosstalk ratio ε. Squaring S�ϕ will create all combinations of
target and neighbor ions in first order of ε which we can as
well express as

S2
�ϕ = S2

�ϕ
∣∣
intended + S2

�ϕ
∣∣
crosstalk. (A33)
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The MS gate

MS�ϕ (θ ) = exp
(−iθS2

�ϕ
)

(A34)

transforms the state ρ as

E (ρ) = exp
(−iθS2

�ϕ
)
ρ exp

(
iθS2

�ϕ
)
. (A35)

The intended part realizes the MS gate rotation on the tar-
get ions. The unitary evolution, which describes the intended
MS gate, then reads

MSϕ1,ϕ2 (θ ) = exp
(−iθS2

ϕ1,ϕ2

)
(A36)

with the spin operator

Sϕ1,ϕ2 = 1
2 (σϕ1 + σϕ2 ). (A37)

The MS interaction originates from the square of the spin
operator

S2
ϕ1,ϕ2

∼= 1
2σϕ1σϕ2 , (A38)

where we have omitted terms which either sum to zero as
the Pauli operators anticommute on the same qubit or square
to the identity and thus contribute only an irrelevant global
phase. For the case ϕ1 = ϕ2 = 0 we find the usual XX -type
MS gate

MS0,0(θ ) = exp

(
−i

θ

4
(X1 + X2)2

)
(A39)

∼= exp

(
−i

θ

2
X1X2

)
(A40)

= cos
θ

2
− i sin

θ

2
X1X2, (A41)

which has the same form as Eq. (A16) with σ = X1X2. An-
other gate relevant to our simulations is, for example, the
non-Clifford gate

MS0,π/4(θ ) = exp

[
−i

θ

2
X1

(
X2 + Y2√

2

)]
, (A42)

which appears in the circuit for deterministic FT magic state
preparation in Fig. 9. Here the identities used for propagation
of Z rotations to the end of the circuit are

MS0,0(−π/2)R(t1 )
Z (α) = R(t1 )

Z (α)MS−α,0(−π/2), (A43)

Rϕ (θ )RZ (α) = RZ (α)Rϕ−α (θ ). (A44)

The crosstalk term in Eq. (A33) contains all combinations
of two single-qubit operators in order ε, as depicted as an ex-
ample in Fig. 20. Neglecting higher orders of ε, each crosstalk
location can be treated as an independent coherent two-qubit
rotation. For example, the location t1, n1(t1) is contained in
the squared spin operator as

S2
�ϕ
∣∣
crosstalk ⊃ ε

2
σϕ1σϕn1 (1) (A45)

and generates the rotation

R1,n1(1) = exp

(
− i

ε

2
θσϕ1σϕn1 (1)

)
. (A46)

FIG. 20. Crosstalk faults on phase-shifted MS gate: Fault lo-
cations (red, dotted lines) for an MS0,−π/4(− π

2 ) gate (black, solid
vertical line) originating from the square of the spin operator in
Eq. (A61). The phase of the crosstalk corresponds to the phase of
the associated target ion.

For any crosstalk location t, n we describe its independent
unitary evolution by the coherent channel

E (ρ) = Rt,n(εθ ) ρ R†
t,n(εθ ) (A47)

= exp

(
− i

ε

2
θσϕt σϕn

)
ρ exp

(
i
ε

2
θσϕt σϕn

)
(A48)

[analogously to Eq. (A6)]. Denoting arbitrary two-qubit Pauli
operators P2 ∈ P ⊗ P , we can perform the Pauli twirling
analogously to the single-qubit crosstalk by calculating the 16
expressions P2E (P2ρP2)P2. The resulting incoherent channel
for one MS crosstalk location (a red gate in Fig. 20) is

Ẽ (ρ) = cos2 εθ

2
ρ + sin2 εθ

2
(cos2 ϕt cos2 ϕnXt XnρXt Xn

+ sin2 ϕt sin2 ϕnYtYnρYtYn

+ cos2 ϕt sin2 ϕnXtYnρXtYn

+ sin2 ϕt cos2 ϕnYt XnρYt Xn), (A49)

where we can now define the incoherent noise channel

Ẽ (ρ) = (1 − pc2 )ρ + pc2 (rxxXt XnρXt Xn + rxyXtYnρXtYn

+ ryxYt XnρYt Xn + ryyYtYnρYtYn) (A50)

with phase ratios

rxx = cos2 ϕt cos2 ϕn, (A51)

rxy = cos2 ϕt sin2 ϕn, (A52)

ryx = sin2 ϕt cos2 ϕn, (A53)

ryy = sin2 ϕt sin2 ϕn. (A54)

Averaging over phases of neighbor ions ϕn, we use Eq. (A21)
to obtain the incoherent noise channel

〈Ẽ〉ϕn (ρ) = (1 − pc2 )ρ + pc2

2

× [cos2 ϕt (Xt Xn ρ Xt Xn + XtYn ρ XtYn)

+ sin2 ϕt (Yt Xn ρ Yt Xn + YtYn ρ YtYn)]. (A55)

For a simple noise model which—in the same spirit as
depolarizing noise—does not need to take into account the
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microscopic nature of the gate, we also average over the target
ion phases ϕt to obtain the channel

Ec2 (ρ) = (1 − pc2 )ρ + pc2

4
(Xt XnρXt Xn + XtYnρXtYn

+ Yt XnρYt Xn + YtYnρYtYn), (A56)

which we use in our numerical simulations.
We now consider the special case where the two target

ions share a common neighbor, i.e., that n2(1) = n1(2), which
receives laser light from both target ions. If also the phases
on target and neighbor ions are the same, the spin operator in
Eq. (A32) changes to read

S�ϕ = 1
2

[
σϕ,1 + σϕ,2 + ε

(
σϕ,n1(1) + 2σϕ,n2(1) + σϕ,n2(2)

)]
,

(A57)

so we get a coherent rotation of doubled angle θ → 2θ on the
common neighbor ion. This doubling translates to the inco-
herent model through sin εθ = 4 sin2 εθ/2 cos2 εθ/2 to a shift in
probability pc2 → 4pc2 .

This is, e.g., relevant for the XX crosstalk discussed
in Sec. V where for all MS gates ϕ1 = ϕ2 = 0. On each
target-neighbor pair t, n we can expand the unitary evolution
operators from the coherent channel

Ecct(ρ) = exp

(
− i

ε

2
θXt Xn

)
ρ exp

(
i
ε

2
θXt Xn

)
(A58)

[cf. Eq. (A46)] to obtain an incoherent noise channel for the
MS gate crosstalk after PTA. Every crosstalk location which
does not involve a common neighbor ion is then subject to the
noise channel

Exct(ρ) = (1 − pc2 )ρ + pc2 Xt Xn(t )ρXt Xn(t ) (A59)

with pc2 (θ ) = sin2 εθ/2 = 6.2 × 10−5 and θ = −π/2. For
locations with common neighbor ions the shifts θ → 2θ and
pc2 → 4pc2 are taken into account in the numerical simula-
tions respectively.

As another special case, let us consider target ions labeled
as qubits 2 and 4 so there is a common neighbor 3 and two
outer neighbors 1 and 5. We take ϕ1 = 0 and ϕ2 = −π/4
and define the operator F ≡ X−Y√

2
. Under the assumption that

the neighbor ion phases were the same as their associated
target ion’s phase, we now find all operator combinations that
contribute to crosstalk from

S0,−π/4 = 1
2 [X2 + F4 + ε(X1 + X3 + F3 + F5)], (A60)

S2
0,−π/4 ⊃ 1

4 [2ε(X1X2 + X2X3 + X2F3 + X2F5

+ X1F4 + X3F4 + F3F4 + F4F5)] (A61)

in the squared spin operator. Note that both terms X3F4 and
F3F4 occur in Eq. (A61) so there is no angle doubling on
the common neighbor qubit 4 since ϕ1 �= ϕ2. Adjusting the
phases of target ions could also be used in order to cancel
the crosstalk on a common neighbor ion completely with the
above assumption.

Overrotations

The above reasoning for deriving noise channels from rota-
tion operators can also be applied for overrotations of a small

angle ξ on a rotation about θ on an MS target qubit pair. This
effectively implements a rotation of angle θ + ξ around an
axis parametrized by phases ϕ1, ϕ2 for a two-qubit gate. The
incoherent noise channel that we employ for simulations of
XX overrotation in MS gates [Eq. (A40)] is

E (2)
ior (ρ) = (1 − p2)ρ + p2X1X2ρX1X2 (A62)

with

p2 = sin2 ξ

2
. (A63)

The corresponding coherent channel reads

E (2)
cor (ρ) = exp

(
−i

ξ

2
X1X2

)
ρ exp

(
+i

ξ

2
X1X2

)
. (A64)

APPENDIX B: SIMULATION METHODS

In this Appendix, we provide a detailed description of
the theoretical methods employed for numerical simulations
of logical failure rates. Depending on the range of physical
error rates, we make use of either direct Monte Carlo (MC)
simulation or subset sampling (SS) which is an importance
sampling technique focusing on just the most important fault-
weight-subsets contributing significantly to the logical failure
rate.

a. Direct Monte Carlo

When using direct Monte Carlo simulations, we model
faulty qubit operations by an ideal unitary U which is fol-
lowed by a fault operator E to form the faulty operation

Ufaulty = E · Uideal. (B1)

The operator E is placed after any ideal unitary gate or qubit
initialization (or before a qubit measurement) with probability
�p = (p1, p2, pi, . . . ) and then drawn from the set of all pos-
sible fault operators according to the noise model. The MC
estimator for the logical failure rate p̂L is given by the number
of samples where the stochastic placing of fault operators
results in a logical failure divided by the total number of
samples

p̂L = no. logical failures

no. MC samples
. (B2)

The sampling error for MC sampling can be estimated by the
Wald interval

εMC =
√

p̂L(1 − p̂L )

N
(B3)

so that for a large number of samples N → ∞ the true logical
failure rate pL is likely to be found in the confidence interval
[ p̂L − εMC, p̂L + εMC]. It is known that for p̂L estimations
that are close to or equal to zero or one after a finite but
potentially small number of samples the Wald interval suffers
from irregularities. These can be prevented using the Wilson
score interval [101] instead which is bounded by

p± = 1

1 + z2
α/2

N

⎛
⎝ p̂L + z2

α/2

2N
± zα/2

√
p̂L(1 − p̂L )

N
+ z2

α/2

4N2

⎞
⎠
(B4)
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at confidence level α where z is the quantile function of the
normal distribution.

MC sampling is efficient in a regime of physical failure
rates where faults are realized frequently so we employ it
for only larger physical failure rates. For low physical failure
rates, in MC sampling one would mostly run the fault-free
case, e.g., at p = 0.1% and a circuit of 100 gates the ideal
circuit would be realized (1 − p)100 ≈ 90% of the time. When
realization of fault operations becomes a rare event, we turn
towards subset sampling instead.

b. Subset sampling

The logical failure rate pL can be written as a sum of so-
called subset failure rates �pfail that contribute with different
weights A( �w, �p) each, so that

pL =
∑

�w
A( �w, �p) �pfail( �w), (B5)

where we distinguish subsets by the weight �w =
(w1,w2,wi, . . . ) of the fault operator that is applied to
the respective circuit operations. Each subset failure rate
�pfail( �w) is obtained by MC sampling fault operations with
fixed weight �w. The contribution of each subset is given by
the binomial weight

A( �w, �p) =
∏
μ

(
Nμ

wμ

)
pwμ

μ (1 − pμ)Nμ−wμ, (B6)

where μ iterates over all types of faulty circuit operations
since the probability of applying exactly wμ fault operators is
pwμ

μ (1 − pμ)Nμ−wμ and there are
(Nμ

wμ

)
possibilities to arrange

these configurations for any type μ ∈ {1, 2, i, . . . }. The true
logical failure rate is bounded by

p̂L =
�wmax∑
�w=�0

A( �w, �p) �pfail( �w) � pL (B7)

�
�wmax∑
�w=�0

A( �w, �p) �pfail( �w) +
�N∑

�wmax+1

A( �w, �p), (B8)

where the weight cutoff error

δ( �p) =
�N∑

�wmax+1

A( �w, �p) (B9)

vanishes for low physical failure rates δ( �p) → 0 as �p → �0.
However, in the opposite regime δ( �p) becomes large so one
must choose an appropriate weight cutoff �wmax to keep the
cutoff error below a desired numerical value. For large weight
cutoff | �wmax| the number of subsets is so large that it becomes
advantageous to use MC sampling instead. Subset sampling
will be advantageous as long as the fault-free subset �w = �0 is
the largest subset

A(�0, �p) � A( �w, �p) ∀ �w. (B10)

FIG. 21. Uncompiled logical Hadamard measurement circuit:
Flag FT circuit for measuring the logical Hadamard operator ac-
cording to Ref. [5]. The qubit mapping is not changed because our
stabilizers are unchanged compared to Ref. [5]. The faults Xm (red,
eight-cornered star), X2Xm (blue, 12-cornered star) and Z4 (green, 10-
cornered star) as described in the text are shown with their respective
propagated errors H1H2H3H4, X2H1H3H4, and Z4.

The MC sampling errors εSS( �w) ∼
√

�pfail ( �w)[1−�pfail ( �w)]
NSS( �w) for all

subsets accumulate to the sampling error on the logical failure
rate

εSS =
√√√√ �wmax∑

�w=�0
[A( �w, �p)εSS( �w)]2, (B11)

so that overall the true logical failure rate pL will likely be in
the interval [ p̂L − εSS, p̂L + εSS + δ].

c. Practical procedure

For the logical failure rates presented in this work we
performed the following sampling procedure. First, we fix a
scale of interest for the physical failure rates parametrized
by λ [see Eq. (11)]. This scale contains the experimental
parameters as a reference point at λ = 1. For the depolarizing
noise model we scale the parameters p1, p2, pi, pm and for
the extended noise model we additionally scale the param-
eters pidle,1, pidle,2, pidle,m, pc1 (π ), pc1 (π/2), pc1 (π/4), pc2 .
For the XX -type crosstalk model, pc2 is replaced by pc2,com

and pc2,non for common and noncommon neighbor ion
crosstalk locations.

We then start our numerical simulation by using MC at the
largest physical failure rates and sample at decreasing physical
failure rate until either the target relative error is reached or
the previously specified maximum number of samples has
been run. In the latter case or when no logical failure was
recorded at all, we repeat the simulation at the present physical
failure rates using subset sampling. Here we now choose the
maximum weight such that the cutoff error δ at the present
physical failure rates accounts for at most half of the target
relative error. We perform subset sampling uniformly over
all relevant subsets until the sampling error εSS is also at
most half of the target relative error or until the maximum
number of samples has been reached. The sampling error
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FIG. 22. Flowchart for the deterministic FT magic state prepara-
tion procedure: In-sequence measurements determine the circuits of
the noisy protocol chosen dynamically during runtime (rectangles).
The measurement outcome of an individual MH circuit is labeled h.
Measurements of flag circuits are shown as outputs f and f ′. Denoted
by s is the syndrome output by KnFT. Additional corrections need
to be applied (ovals) depending on the intermediate measurement
results: R is drawn from the Steane look-up Table I, the Hadamard
error set (Table III) or the flag error set (FES) and F and Y are given
in Fig. 11. The sets of measurement results that cause application of
F and Y are labeled FL and HY, respectively.

for all numerical simulations is given as the Wilson score
interval (B4) at a confidence level of 95% (z0.025 ≈ 1.96) in
a symmetric form [ p̂L − p+−p−

2 , p̂L + p+−p−
2 ]. This prevents

us from irregularities of the Wald interval that may occur
at subset failure rate estimations that are close to or equal
to zero or one after a finite but potentially small number of
samples.

In subset sampling we refrain from actually sampling the
fault-free subset but fix its subset failure rate and sampling
error to be equal to zero. For a non-FT circuit we exhaustively
place all possible weight-1 faults to obtain the subset failure
rates for the subsets with total weight | �w| equal to one exactly,
i.e., without sampling error. We do the same for all crosstalk

faults since they do not respect the FT property in general. For
faults that do respect FT, we also fix their subset failure rates
and sampling error to be equal to zero.

APPENDIX C: DETERMINISTIC FT MAGIC STATE
PREPARATION

The look-up table used for correcting errors during the
logical Hadamard measurement as part of the deterministic
FT magic state preparation protocol in Fig. 11 is given in
Table III. The recovery operation R which is applied directly
after an EC block depends not only on the measured syn-
drome but also on the flag pattern f0, f1, f2, f3 measured in
the MH block. Note for example that the syndromes 000 001
may lead to either the recovery operation R = X2 or R = X1X3

depending on said flag measurements. The full six-bit syn-
drome is necessary to correct all Hadamard errors despite the
symmetry of X and Z stabilizers in the Steane code. To see
this, consider the Hadamard error

H1H3 = 1
2 (X1X3 + Z1X3 + X1Z3 + Z1Z3). (C1)

Since H = X+Z√
2

the product of two or more Hadamards mixes
all possible combinations of X and Z operators which must
be distinguished by the syndrome. At the same time, the flag
pattern allows us to distinguish weight-2 errors from weight-1
errors that would cause the same syndrome.

To see why the correction F = H1H3H4 from Fig. 11(c) is
necessary, we consider the uncompiled version of the mea-
surement circuit MH from Ref. [5] which is reproduced in
Fig. 21. Here an X fault on the measurement qubit can cause
the error H1H2H3H4 at the end of MH as shown in Fig. 21. This
error contains all combinations of X- and Z-type operators on
qubits 1 to 4, for instance X1X2X3Z4 = XLZ4 and Z1Z2Z3Z4 =
ZLZ4. Both these constituents of the Hadamard error will lead
to the same syndrome measurement in the EC block, namely,
− + + + ++, the one matching Z4, but different logical op-
erators are introduced unnoticed. Applying the F -block will
transform the error to F H1H2H3H4 = H2 
 X2 + Z2. By the
subsequent EC block, this superposition will collapse so that
either the syndrome + + + + +− or + + − + ++ will be
measured and the respective error can be corrected. If instead
we had not applied the F operation, we could confuse the
error with another one causing the same syndrome, i.e., an
error that does not contain logical X or logical Z as shown
above but a logical identity or logical Y on qubits 1 to 3.
Keep in mind that also the flag pattern needs to be identical
so that we cannot use it either to distinguish the errors. Con-
sider the Z4Im fault on the third to last controlled Hadamard
gate. It will cause the error Z4 with syndrome − + + + ++
which can be distinguished from the XLZ4 and ZLZ4 errors
given above because it will not trigger any flag of MH . As an
example of two faults that lead to the same flag pattern and
syndrome if F were not applied, take the fault X2Xm on the
fourth controlled-Hadamard gate and Xm just before this gate.
Both cause the flag pattern 1011. The former will cause the
error X2H1H3H4 and the latter will propagate to H1H2H3H4

which is equivalent when acting on the logical magic state to
H5H6H7 since the magic state is the eigenstate of the logical
Hadamard operator HL = H⊗7. These two errors can, e.g.,
be collapsed to X1X2X3X4 and X5X6X7 by the EC block and
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FIG. 23. Parallel stabilizer readout: FT circuit for interleaved measurement of all six stabilizers. Auxiliary qubits simultaneously act as
measurement and flag qubits for the deterministic FT magic state preparation protocol (see Fig. 11).

the syndrome + + + − ++ will be measured. Since they
differ by a logical X they cannot be distinguished by the
Hadamard look-up table. Applying F will transform the errors
according to

FX2H1H3H4 = X2, (C2)

FH5H6H7 = H1H3H4H5H6H7

⇔ FH1H2H3H4 = H2, (C3)

which can both be corrected. As another example, these two
faults could also collapse to X1X2X3Z4 and Z1Z2Z3Z4 respec-
tively by the EC block yielding syndrome − + + + ++.
Confusing one for the other we would in total apply a logical
Y operation to the logical magic state which is prevented by
the F flip.

The steps involved in the deterministic FT magic state
preparation are depicted as a flowchart in Fig. 22. The overall
correction strategy works as follows: If the Hadamard mea-

surement flags and there exists an entry in the Hadamard
look-up Table III for the measured flag pattern and syndrome,
apply the corresponding recovery operation. Else, if the error
correction (Fig. 23) flags, run the non-FT syndrome readout
(Fig. 24) and apply the correction according to the flag error
set if the flags and syndrome disagree. Otherwise, apply the
standard Steane look-up table recovery operation. For the EC
block, X - and Z-type syndromes can be read out indepen-
dently from each other.

APPENDIX D: QUANTUM STATE FIDELITY

The full quantum state fidelity of the data qubit state is
defined as

F (ρt , ρ) = tr(ρtρ) = 〈ρt 〉, (D1)

the expectation value of our logical target state ρt = |t〉 〈t |.
Equation (D1) is in contrast to the logical fidelity which is
the overlap of the output state with the desired logical Bloch

FIG. 24. Sequential stabilizer readout: The circuit is used for non-FT stabilizer readout of the six bit syndrome as part of the deterministic
FT magic state preparation protocol shown in Fig. 11. Each CNOT gate is directly compiled into the sequence of MS gates and local rotations
as given in Fig. 1(c).
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FIG. 25. Single-qubit gate benchmarking: Success probability decay of randomized benchmarking sequences in a 16-qubit register (qubit
1 in the top-left corner, qubit 16 in the bottom-right corner). The scatter on the horizontal axis around the sequence lengths 2, 5, 10, 15, and 20
is introduced for better visibility of the success probability of the individual random sequences. The discretization on the vertical axis is given
by averaging over 150 executions per random sequence.

vector. The quantum state fidelity is the standard quantity
that characterizes a quantum state independently of any QEC
framework. It contains information about the full state includ-
ing local properties which the logical fidelity fails to provide
since it is merely understood as the overlap of the logical
Bloch vector with the desired logical target state, i.e., the
projection onto this state. Although the logical fidelity reflects
the probability to successfully recover the state after a noisy
circuit, it is defined only in the code space but not the full
n-qubit Hilbert space [8]. Since the stabilizers subdivide the
Hilbert space to form the code space in the first place, it
is important to quantify how well the code space itself is
prepared, i.e., how close to unity are the expectation values
of the stabilizer generators.

We expand the general n-qubit target state ρt in the oper-
ator basis formed by all possible n-qubit Pauli operators Wk

where k = 1, . . . , 4n. The quantum state fidelity then reads

F (ρt , ρ) = 1

4n
tr

(
4n∑

k=1

[tr(Wkρt )Wk]ρ

)
. (D2)

For stabilizer states ρ = |ψ〉 〈ψ | with Wk |ψ〉 = ± |ψ〉
being the elements of the stabilizer group, only the 2n co-
efficients corresponding to the set of all stabilizer elements
Wk are nonzero tr(Wkρ) = ±1. The fidelity can then be
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TABLE IV. Single-qubit gate fidelities estimated from random-
ized benchmarking in a 16-qubit register. The number of Clifford
operations used in the generation of the benchmarking sequences
ranges from two to 20. The given errors are 95% confidence intervals.

Qubit number Single-qubit gate fidelity

1 0.9978(3)
2 0.9978(3)
3 0.9975(3)
4 0.9973(3)
5 0.9977(3)
6 0.9980(3)
7 0.9975(3)
8 0.9969(4)
9 0.9976(3)
10 0.9977(3)
11 0.9975(3)
12 0.9977(3)
13 0.9975(3)
14 0.9974(3)
15 0.9979(3)
16 0.9975(3)

expressed as

F (ρt , ρ) = 1

2n

2n∑
k=1

〈Wk〉, (D3)

where the Wk are all possible products of combinations of
stabilizer elements of the logical state, i.e., combinations of
code stabilizer generators with the respective logical operators
or the identity:

2n∑
k=1

Wk =
n∏

i=1

I + Si

2
, (D4)

Si ∈ {
KX

1 , KZ
1 , KX

2 , KZ
2 , KX

3 , KZ
3 , Ot

}
. (D5)

For stabilizer states we need to evaluate only Eq. (D3) to
obtain the quantum state fidelity. For a single logical qubit
in an n = 7-qubit register ρt may be factorized by projectors
onto the code space and the logical subspace

ρt = P±Ot PCS, (D6)

PCS =
6∏

i=1

I + Ki

2
, (D7)

P±Ot = I ± Ot

2
. (D8)

The density operator for the logical zero state |0〉L reads

ρ|0〉L
= |0〉 〈0|L = I + ZL

2
PCS, (D9)

and the state fidelity for each of these cases reduces to

F (ρt , ρ) = 1

128

128∑
k=1

〈Wk〉 (D10)

FIG. 26. Sixteen-qubit GHZ state preparation circuit: The circuit
is used to estimate the fidelity of a single entangling gate. The opera-
tions P(†) are resonant pulses with a rotation angle of π (and opposite
rotation direction) on the transition 4S1/2,m j=−1/2 to 3D5/2,m j=−3/2 used
for (un)hiding of qubits. This shelving procedure reduces noise due
to crosstalk from multiple entangling gates acting on qubit 3.

with the respective Wk = I, . . . , ZLKX
1 KZ

1 KX
2 KZ

2 KX
3 KZ

3 . The
code space population pCS and the fidelity within the code
space FCS is obtained via

pCS = tr(PCSρt ) = 1

64

64∑
k=1

〈Wk〉, (D11)

FCS(ρt ) = tr(ρtρ)

pCS
, (D12)

where the 64 terms for the code space population are the Pauli
operators Wk which do not contain the logical operator Wk =
I, . . . , KX

1 KZ
1 KX

2 KZ
2 KX

3 KZ
3 .

APPENDIX E: SINGLE-QUBIT RANDOMIZED
BENCHMARKING

The fidelity of single-qubit operations is extracted from
randomized benchmarking experiments as described in
Ref. [102], where a single Clifford operation is decomposed
into 2.167 laser pulses on average. In Fig. 2 we combined data
for all 16 qubits to a single data set, whereas in Fig. 25 we
show the underlying data sets for all qubits individually. The
numerical values for single-qubit gate fidelities are given in
Table IV. As there is no pattern of single-qubit gate fidelity
with respect to the position in the ion chain apparent, all error
models discussed in this work feature only a single fidelity for
all single-qubit gates.

APPENDIX F: ESTIMATION OF ENTANGLING
GATE FIDELITY

To estimate the mean fidelity of entangling operations
without using time-consuming benchmarking techniques the
following approach is used: We prepare the 16-qubit GHZ
state |ψGHZ〉 = (|0〉⊗16 − i |1〉⊗16)/

√
2 across the entire reg-

ister by using 15 two-qubit MS gates and 40 single-qubit
resonant operations. The corresponding circuit is depicted
in Fig. 26. For the analysis of the fidelity of the prepared
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GHZ state we perform two measurements: The probabilities
to project to the basis states |0〉⊗16 and |1〉⊗16 are determined
by a direct projective measurement in the Z-basis. The off-
diagonal elements of the density matrix of the GHZ state
instead are measured by applying single-qubit gates R(i)

ϕ (π/2)
to all qubits after preparing the GHZ state. For different
phases ϕ the parity of the prepared state is measured via a
projective measurement and a sinusoidal model is fitted to the
observed parity oscillations [103]. The mean of the sum of the
populations in |0〉⊗16 and |1〉⊗16 and the contrast of the parity
oscillations of the coherence measurement gives the fidelity

of the GHZ state. The fidelity of a single two-qubit gate is
estimated as [104]

Ftq =
(
FGHZ

F40
sq

) 1
15

, (F1)

where FGHZ = 0.62(3) and Fsq = 0.99760(8) are fidelity
of the GHZ state and mean single-qubit gate fidelity es-
timated from randomized benchmarking, respectively. The
estimated two-qubit gate fidelity in the 16-qubit register is
Ftq = 0.975(3).
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