001005622 001__ 1005622
001005622 005__ 20240529111738.0
001005622 037__ $$aFZJ-2023-01571
001005622 1001_ $$0P:(DE-Juel1)145694$$aFriese, Karen$$b0$$ufzj
001005622 1112_ $$aEighth European Conference on Neutron Scattering$$cTUM Department of Mechanical Engineering and the new Science Congress Center Munich$$d2023-03-19 - 2023-03-23$$gECNS 2023$$wGermany
001005622 245__ $$aRedetermination of the incommensurately modulated magnetic structure of CrAs
001005622 260__ $$c2023
001005622 3367_ $$033$$2EndNote$$aConference Paper
001005622 3367_ $$2DataCite$$aOther
001005622 3367_ $$2BibTeX$$aINPROCEEDINGS
001005622 3367_ $$2DRIVER$$aconferenceObject
001005622 3367_ $$2ORCID$$aLECTURE_SPEECH
001005622 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1679654622_6133$$xInvited
001005622 520__ $$aChromium arsenide (CrAs) is considered a model system in which superconductivity and helimagnetism coexist. Thesuperconductivity is induced by pressure and forms a dome-like phase region with a maximum TC of 2.2 K at about 1 GPa. Thesuperconductivity occurs in the vicinity of an antiferromagnetical phase of CrAs which is incommensurate and described as adouble helix in the literature. This model was first proposed on the basis of neutron powder diffraction data and assuming ananalogous magnetic structure as the one observed for MnP [1]. Since the model was in reasonable agreement with the powderPage 18Monday, 20 March 2023diffraction data, it was henceforth considered to be correct for CrAs. We have investigated the magnetic structure of CrAs for thefirst time by means of neutron high-pressure single-crystal diffraction in clamp cells. The results clearly show that the establishedmodel of the magnetic structure of CrAs is not in accordance with the measured intensities and can be discarded. While our datado not allow an unambiguous identification of one singular model, we identify four candidate models based on a stringent use ofgroup theoretical considerations and the subsequent refinement using magnetic superspace groups with the program Jana2006[2]. Details of these models will be presented. Acknowledgments: This work was supported by the BMBF under projectNo.05K19PA2. [1] H. Watanabe et.al., J. Appl. Phys. 40,1128-1129 (1969). [2] V. Petricek et. al.,. Z. Kristallogr. 229, 345-352(2014).
001005622 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001005622 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001005622 909CO $$ooai:juser.fz-juelich.de:1005622$$pVDB
001005622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145694$$aForschungszentrum Jülich$$b0$$kFZJ
001005622 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001005622 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001005622 9141_ $$y2023
001005622 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001005622 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
001005622 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001005622 980__ $$aconf
001005622 980__ $$aVDB
001005622 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001005622 980__ $$aI:(DE-Juel1)PGI-4-20110106
001005622 980__ $$aI:(DE-82)080009_20140620
001005622 980__ $$aUNRESTRICTED
001005622 981__ $$aI:(DE-Juel1)JCNS-2-20110106