001 | 1005624 | ||
005 | 20240529111720.0 | ||
037 | _ | _ | |a FZJ-2023-01573 |
100 | 1 | _ | |a Schweika, Werner |0 P:(DE-Juel1)130963 |b 0 |u fzj |
111 | 2 | _ | |a Eighth European Conference on Neutron Scattering |g ECNS 2023 |c TUM Department of Mechanical Engineering and the new Science Congress Center Munich |d 2023-03-19 - 2023-03-23 |w Germany |
245 | _ | _ | |a Chiral Spin Liquid Ground State in YBaCo3FeO7 |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1679651075_27654 |2 PUB:(DE-HGF) |x Invited |
520 | _ | _ | |a A chiral spin liquid state is discovered in the highly frustrated, layered kagome system YBaCo3FeO7 by polarized diffuse neutronscattering [1]. From the antisymmetric part of scattering, related to vector chirality, we determine the chiral correlation function byFourier analysis. The chiral short-range order indicates the emergence of chiral lumps. It can be described by cycloidal waves,which originate from the trigonal sites and extend into the kagome layers. The observed vector chirality agrees with the underlyingantisymmetric Dzialoshinsky-Moriya exchanges arising from broken spatial parity. This chiral spin liquid state is stable down tolowest temperatures despite of strong antiferromagnetic spin exchange. The observation of a possible short-range ordered groundstate raises a fundamental challenge. However, based on the classical theory of magnetic order, we show that such a groundstate may arise from the antisymmetric exchange acting as a frustrating gauge background stabilizing local spin lumps. Thisscenario may appear in many highly frustrated magnetic systems in non-centrosymmetric compounds and has similarities to theavoided phase transition in coupled gauge- and matter-fields for subnuclear particles. [1] W. Schweika, M. Valldor, J. D. Reim, andU. K. Rosler, Chiral Spin Liquid Ground State in YBaCo3FeO7, Phys. Rev. X 12, 021029 (2022). |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 1 |
909 | C | O | |o oai:juser.fz-juelich.de:1005624 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130963 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 1 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|