001005630 001__ 1005630
001005630 005__ 20240712113231.0
001005630 0247_ $$2doi$$a10.1016/j.jpowsour.2023.233242
001005630 0247_ $$2ISSN$$a0378-7753
001005630 0247_ $$2ISSN$$a1873-2755
001005630 0247_ $$2Handle$$a2128/34574
001005630 0247_ $$2WOS$$aWOS:001011479000001
001005630 037__ $$aFZJ-2023-01579
001005630 082__ $$a620
001005630 1001_ $$0P:(DE-Juel1)171318$$aHoppe, Eugen$$b0$$eCorresponding author
001005630 245__ $$aAn ex-situ investigation of the effect of clamping pressure on the membrane swelling of a polymer electrolyte water electrolyzer using X-Ray tomography
001005630 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001005630 3367_ $$2DRIVER$$aarticle
001005630 3367_ $$2DataCite$$aOutput Types/Journal article
001005630 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687517582_31381
001005630 3367_ $$2BibTeX$$aARTICLE
001005630 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005630 3367_ $$00$$2EndNote$$aJournal Article
001005630 520__ $$aDue to water uptake, the polymer membrane of polymer electrolyte membrane water electrolyzers (PEMWE) swells, increases in thickness and so induces swelling pressure. The water content in the membrane and catalyst coated membrane (CCM), respectively, defines the protonic conductivity, which has a significant impact on the performance of a PEMWE. In order to ensure the gas tightness of the PEMWE and increase the thermal and electrical connectivity between the different layers, the entire electrolyzer is compressed. Whether and in which way the swelling of the CCM is influenced by applying pressure or influences the surrounding layers is investigated in this study using a special compression device and X-ray computer tomography (CT). CT scans were carried out and the resulting cross-sectional images analyzed. Five different compression pressures between 0.36 and 1.63 MPa were applied for the dry (28 °C, atmospheric humidity) and wet (28 °C, surrounded by liquid water) states. The thickness change of the CCM and adjacent porous transport layers (PTL) was then measured. Due to the compression pressure, the thickness of the CCM decreased by 5%. For lower pressures, the carbon paper PTL compensates more of the swelling than the titanium felt PTL. For higher pressures, the ratio is inverse.
001005630 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001005630 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001005630 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005630 7001_ $$0P:(DE-Juel1)178836$$aHoltwerth, Sebastian$$b1
001005630 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b2
001005630 7001_ $$0P:(DE-HGF)0$$aLehnert, Werner$$b3
001005630 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2023.233242$$gVol. 578, p. 233242 -$$p233242 -$$tJournal of power sources$$v578$$x0378-7753$$y2023
001005630 8564_ $$uhttps://juser.fz-juelich.de/record/1005630/files/1-s2.0-S0378775323006183-main.pdf$$yOpenAccess
001005630 8767_ $$d2024-04-03$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragen ok
001005630 909CO $$ooai:juser.fz-juelich.de:1005630$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001005630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171318$$aForschungszentrum Jülich$$b0$$kFZJ
001005630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178836$$aForschungszentrum Jülich$$b1$$kFZJ
001005630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b2$$kFZJ
001005630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001005630 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001005630 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001005630 9141_ $$y2023
001005630 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005630 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
001005630 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005630 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
001005630 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
001005630 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2023-08-28
001005630 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005630 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005630 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001005630 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001005630 920__ $$lyes
001005630 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001005630 9801_ $$aFullTexts
001005630 980__ $$ajournal
001005630 980__ $$aVDB
001005630 980__ $$aUNRESTRICTED
001005630 980__ $$aI:(DE-Juel1)IEK-14-20191129
001005630 980__ $$aAPC
001005630 981__ $$aI:(DE-Juel1)IET-4-20191129