001     1005639
005     20231027114359.0
024 7 _ |a 10.1111/jsr.13884
|2 doi
024 7 _ |a 0962-1105
|2 ISSN
024 7 _ |a 1365-2869
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01582
|2 datacite_doi
024 7 _ |a 36944539
|2 pmid
024 7 _ |a WOS:000954145300001
|2 WOS
037 _ _ |a FZJ-2023-01582
082 _ _ |a 610
100 1 _ |a Weihs, Antoine
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lack of structural brain alterations associated with insomnia: findings from the ENIGMA‐Sleep Working Group
260 _ _ |a Oxford [u.a.]
|c 2023
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697185569_18980
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Existing neuroimaging studies have reported divergent structural alterations in insomnia disorder (ID). In the present study, we performed a large-scale coordinated meta-analysis by pooling structural brain measures from 1085 subjects (mean [SD] age 50.5 [13.9] years, 50.2% female, 17.4% with insomnia) across three international Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)-Sleep cohorts. Two sites recruited patients with ID/controls: Freiburg (University of Freiburg Medical Center, Freiburg, Germany) 42/43 and KUMS (Kermanshah University of Medical Sciences, Kermanshah, Iran) 42/49, while the Study of Health in Pomerania (SHIP-Trend, University Medicine Greifswald, Greifswald, Germany) recruited population-based individuals with/without insomnia symptoms 75/662. The influence of insomnia on magnetic resonance imaging-based brain morphometry using an insomnia brain score was then assessed. Within each cohort, we used an ordinary least-squares linear regression to investigate the link between the individual regional cortical and subcortical volumes and the presence of insomnia symptoms. Then, we performed a fixed-effects meta-analysis across cohorts based on the first-level results. For the insomnia brain score, weighted logistic ridge regression was performed on one sample (Freiburg), which separated patients with ID from controls to train a model based on the segmentation measurements. Afterward, the insomnia brain scores were validated using the other two samples. The model was used to predict the log-odds of the subjects with insomnia given individual insomnia-related brain atrophy. After adjusting for multiple comparisons, we did not detect any significant associations between insomnia symptoms and cortical or subcortical volumes, nor could we identify a global insomnia-related brain atrophy pattern. Thus, we observed inconsistent brain morphology differences between individuals with and without insomnia across three independent cohorts. Further large-scale cross-sectional/longitudinal studies using both structural and functional neuroimaging are warranted to decipher the neurobiology of insomnia.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Frenzel, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bi, Hanwen
|0 P:(DE-Juel1)190453
|b 2
|u fzj
700 1 _ |a Schiel, Julian E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Afshani, Mortaza
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bülow, Robin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ewert, Ralf
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fietze, Ingo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 8
700 1 _ |a Jahanshad, Neda
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Khazaie, Habibolah
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Riemann, Dieter
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Rostampour, Masoumeh
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Stubbe, Beate
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Thomopoulos, Sophia I.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Thompson, Paul M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Valk, Sofie L.
|0 P:(DE-Juel1)173843
|b 16
|u fzj
700 1 _ |a Völzke, Henry
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Zarei, Mojtaba
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 19
|u fzj
700 1 _ |a Grabe, Hans J.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 21
|u fzj
700 1 _ |a Spiegelhalder, Kai
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Tahmasian, Masoud
|0 P:(DE-Juel1)188400
|b 23
|e Corresponding author
773 _ _ |a 10.1111/jsr.13884
|0 PERI:(DE-600)2007459-1
|n 5
|p e13884
|t Journal of sleep research
|v 32
|y 2023
|x 0962-1105
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005639/files/Journal%20of%20Sleep%20Research%20-%202023%20-%20Weihs%20-%20Lack%20of%20structural%20brain%20alterations%20associated%20with%20insomnia%20findings%20from%20the.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005639/files/Weihs_ENIGMA_Insomnia_JSR_postprint-1.pdf
909 C O |o oai:juser.fz-juelich.de:1005639
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190453
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)190453
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)173843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 16
|6 P:(DE-Juel1)173843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 19
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 21
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)188400
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 23
|6 P:(DE-Juel1)188400
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SLEEP RES : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21