001005642 001__ 1005642
001005642 005__ 20231027114359.0
001005642 0247_ $$2doi$$a10.1016/j.neuroimage.2023.120044
001005642 0247_ $$2ISSN$$a1053-8119
001005642 0247_ $$2ISSN$$a1095-9572
001005642 0247_ $$2Handle$$a2128/34427
001005642 0247_ $$2pmid$$a36940760
001005642 0247_ $$2WOS$$aWOS:000981253100001
001005642 037__ $$aFZJ-2023-01585
001005642 082__ $$a610
001005642 1001_ $$0P:(DE-HGF)0$$aKong, Ru$$b0
001005642 245__ $$aComparison Between Gradients and Parcellations for Functional Connectivity Prediction of Behavior
001005642 260__ $$aOrlando, Fla.$$bAcademic Press$$c2023
001005642 3367_ $$2DRIVER$$aarticle
001005642 3367_ $$2DataCite$$aOutput Types/Journal article
001005642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684226310_3440
001005642 3367_ $$2BibTeX$$aARTICLE
001005642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005642 3367_ $$00$$2EndNote$$aJournal Article
001005642 520__ $$aResting-state functional connectivity (RSFC) is widely used to predict behavioral measures. To predict behavioral measures, representing RSFC with parcellations and gradients are the two most popular approaches. Here, we compare parcellation and gradient approaches for RSFC-based prediction of a broad range of behavioral measures in the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. Among the parcellation approaches, we consider group-average “hard” parcellations (Schaefer et al., 2018), individual-specific “hard” parcellations (Kong et al., 2021a), and an individual-specific “soft” parcellation (spatial independent component analysis with dual regression; Beckmann et al., 2009). For gradient approaches, we consider the well-known principal gradients (Margulies et al., 2016) and the local gradient approach that detects local RSFC changes (Laumann et al., 2015). Across two regression algorithms, individual-specific hard-parcellation performs the best in the HCP dataset, while the principal gradients, spatial independent component analysis and group-average “hard” parcellations exhibit similar performance. On the other hand, principal gradients and all parcellation approaches perform similarly in the ABCD dataset. Across both datasets, local gradients perform the worst. Finally, we find that the principal gradient approach requires at least 40 to 60 gradients to perform as well as parcellation approaches. While most principal gradient studies utilize a single gradient, our results suggest that incorporating higher order gradients can provide significant behaviorally relevant information. Future work will consider the inclusion of additional parcellation and gradient approaches for comparison.
001005642 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001005642 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005642 7001_ $$0P:(DE-HGF)0$$aTan, Yan Rui$$b1
001005642 7001_ $$0P:(DE-HGF)0$$aWulan, Naren$$b2
001005642 7001_ $$0P:(DE-HGF)0$$aOoi, Leon Qi Rong$$b3
001005642 7001_ $$0P:(DE-HGF)0$$aFarahibozorg, Seyedeh-Rezvan$$b4
001005642 7001_ $$0P:(DE-HGF)0$$aHarrison, Samuel$$b5
001005642 7001_ $$0P:(DE-HGF)0$$aBijsterbosch, Janine D.$$b6
001005642 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C.$$b7
001005642 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b8
001005642 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b9$$eCorresponding author
001005642 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2023.120044$$gp. 120044 -$$p120044 -$$tNeuroImage$$v273$$x1053-8119$$y2023
001005642 8564_ $$uhttps://juser.fz-juelich.de/record/1005642/files/1-s2.0-S1053811923001908-main.pdf$$yOpenAccess
001005642 909CO $$ooai:juser.fz-juelich.de:1005642$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
001005642 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b8
001005642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b9
001005642 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001005642 9141_ $$y2023
001005642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005642 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005642 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001005642 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001005642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001005642 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001005642 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001005642 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
001005642 920__ $$lyes
001005642 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001005642 980__ $$ajournal
001005642 980__ $$aVDB
001005642 980__ $$aUNRESTRICTED
001005642 980__ $$aI:(DE-Juel1)INM-7-20090406
001005642 9801_ $$aFullTexts