001005722 001__ 1005722
001005722 005__ 20240226075427.0
001005722 0247_ $$2doi$$a10.1093/hr/uhad006
001005722 0247_ $$2ISSN$$a2052-7276
001005722 0247_ $$2ISSN$$a2662-6810
001005722 0247_ $$2Handle$$a2128/34208
001005722 0247_ $$2pmid$$a36938573
001005722 0247_ $$2WOS$$aWOS:000950525800004
001005722 037__ $$aFZJ-2023-01594
001005722 082__ $$a640
001005722 1001_ $$00000-0003-1673-3009$$aMuñoz, Pilar$$b0
001005722 245__ $$aQTL analysis for ascorbic acid content in strawberry fruit reveals a complex genetic architecture and association with GDP-L-galactose phosphorylase
001005722 260__ $$aLondon$$bNature Publ. Group$$c2023
001005722 3367_ $$2DRIVER$$aarticle
001005722 3367_ $$2DataCite$$aOutput Types/Journal article
001005722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679997638_30209
001005722 3367_ $$2BibTeX$$aARTICLE
001005722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005722 3367_ $$00$$2EndNote$$aJournal Article
001005722 520__ $$aStrawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines ‘Candonga’ and ‘Senga Sengana’, adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.
001005722 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001005722 536__ $$0G:(EU-Grant)679303$$aGoodBerry - Improving the stability of high-quality traits of berry in different environments and cultivation systems for the benefit of European farmers and consumers (679303)$$c679303$$fH2020-SFS-2015-2$$x1
001005722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005722 7001_ $$00000-0003-2596-8790$$aCastillejo, Cristina$$b1
001005722 7001_ $$0P:(DE-HGF)0$$aGómez, José Antonio$$b2
001005722 7001_ $$0P:(DE-HGF)0$$aMiranda, Luis$$b3
001005722 7001_ $$0P:(DE-HGF)0$$aLesemann, Silke$$b4
001005722 7001_ $$0P:(DE-HGF)0$$aOlbricht, Klaus$$b5
001005722 7001_ $$0P:(DE-HGF)0$$aPetit, Aurélie$$b6
001005722 7001_ $$0P:(DE-HGF)0$$aChartier, Philippe$$b7
001005722 7001_ $$0P:(DE-HGF)0$$aHaugeneder, Annika$$b8
001005722 7001_ $$0P:(DE-HGF)0$$aTrinkl, Johanna$$b9
001005722 7001_ $$0P:(DE-HGF)0$$aMazzoni, Luca$$b10
001005722 7001_ $$00000-0002-6727-5653$$aMasny, Agnieszka$$b11
001005722 7001_ $$0P:(DE-HGF)0$$aZurawicz, Edward$$b12
001005722 7001_ $$0P:(DE-Juel1)181086$$aZiegler, Freya Maria Rosemarie$$b13$$ufzj
001005722 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b14$$ufzj
001005722 7001_ $$0P:(DE-HGF)0$$aSchwab, Wilfried$$b15
001005722 7001_ $$0P:(DE-HGF)0$$aDenoyes, Béatrice$$b16
001005722 7001_ $$0P:(DE-HGF)0$$aMezzetti, Bruno$$b17
001005722 7001_ $$0P:(DE-HGF)0$$aOsorio, Sonia$$b18
001005722 7001_ $$0P:(DE-HGF)0$$aSánchez-Sevilla, José F$$b19
001005722 7001_ $$00000-0002-4612-8902$$aAmaya, Iraida$$b20$$eCorresponding author
001005722 773__ $$0PERI:(DE-600)2781828-7$$a10.1093/hr/uhad006$$gVol. 10, no. 3, p. uhad006$$n3$$puhad006$$tHorticulture research$$v10$$x2052-7276$$y2023
001005722 8564_ $$uhttps://juser.fz-juelich.de/record/1005722/files/uhad006.pdf$$yOpenAccess
001005722 909CO $$ooai:juser.fz-juelich.de:1005722$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001005722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181086$$aForschungszentrum Jülich$$b13$$kFZJ
001005722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b14$$kFZJ
001005722 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001005722 9141_ $$y2023
001005722 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005722 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-13T10:32:50Z
001005722 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-13T10:32:50Z
001005722 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005722 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
001005722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005722 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
001005722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-06-13T10:32:50Z
001005722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHORTIC RES-ENGLAND : 2022$$d2023-10-26
001005722 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHORTIC RES-ENGLAND : 2022$$d2023-10-26
001005722 920__ $$lyes
001005722 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
001005722 980__ $$ajournal
001005722 980__ $$aVDB
001005722 980__ $$aUNRESTRICTED
001005722 980__ $$aI:(DE-Juel1)IBG-4-20200403
001005722 9801_ $$aFullTexts