001005733 001__ 1005733
001005733 005__ 20240313094939.0
001005733 037__ $$aFZJ-2023-01605
001005733 041__ $$aEnglish
001005733 1001_ $$0P:(DE-Juel1)192414$$aKrauße, Sven$$b0$$eCorresponding author$$ufzj
001005733 1112_ $$a15th Goettingen Meeting of the German Neuroscience Society$$cGoettingen$$d2023-03-22 - 2023-03-24$$gNWG$$wGermany
001005733 245__ $$aRelating the orientation of cortical traveling waves and co-occurring spike patterns
001005733 260__ $$c2023
001005733 3367_ $$033$$2EndNote$$aConference Paper
001005733 3367_ $$2BibTeX$$aINPROCEEDINGS
001005733 3367_ $$2DRIVER$$aconferenceObject
001005733 3367_ $$2ORCID$$aCONFERENCE_POSTER
001005733 3367_ $$2DataCite$$aOutput Types/Conference Poster
001005733 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1683087476_27306$$xAfter Call
001005733 520__ $$aTo study information processing in the cerebral cortex, multiple complementary approaches exist to characterize the coordinated population dynamics. One approach is to investigate the correlated spiking activity of individual neurons. Another approach is to analyze the local field potential (LFP) as an aggregate signature of the neuronal population dynamics. However, it is an open question how these two scales of observation relate to each other.The LFP activity in the motor cortex exhibits functionally relevant oscillations in the beta frequency band (e.g. [1]). It has been shown that the phases of beta oscillations typically form propagating waves [2, 3]. These are commonly observed as planar waves that travel across the primary motor cortex, preferably on a rostral-caudal axis [3]. Significant patterns of precise synchronous spiking (on a ms scale) that have been identified in the motor cortex [4] also display a preferred spatial orientation [5]. Indeed, estimated functional connectivity measured from spike trains using a Granger causality approach occurs in a directed manner that aligns with the mean propagation axis of LFP waves [6]. These findings raise the question of a direct relation between a single spike pattern and a co-occurring LFP wave.To investigate this question, we analyzed multi-electrode-array (Utah array) recordings of the motor cortex (MI/PMd) from a macaque monkey during an instructed reach-to-grasp task [7]. In the beta-band LFP recordings (15-25 Hz), we identified wave directions and planarity based on the gradient of the instantaneous phase using an automated analysis pipeline approach (Cobrawap) [8,9]. Independently, we detected all repeating synchronous spike patterns in the same data sets using the SPADE method [10, 11]. We identified the dominant spatial axis of the synchronous spike pattern as the first eigenvector of a principal component analysis (PCA) over the electrode grid coordinates of the involved neurons. We show that this axis tends to be perpendicular to the propagation direction of simultaneously occurring planar waves (cf. Fig.). This relationship does not only appear on average as suggested by previous work [5,6] but also on a pattern-by-pattern basis. Finally, we discuss extensions of this analysis approach to non-synchronous spike patterns.References:[1]: Kilavik et al. (2012). doi:10.1093/cercor/bhr299[2]: Denker et al. (2018). doi:10.1038/s41598-018-22990-7[3]: Rubino et al. (2006). doi:10.1038/nn1802[4]: Riehle et al. (1997). doi:10.1126/science.278.5345.1950[5]: Torre et al. (2016). doi:10.1523/JNEUROSCI.4375-15.2016[6]: Takahashi et al. (2015). doi:10.1038/ncomms8169[7]: Brochier et al. (2018). doi:10.1038/sdata.2018.55[8]: Gutzen et al. (2021). doi:10.12751/NNCN.BC2020.0030[9]: Capone et al. (2022). doi:10.48550/arXiv.2104.07445[10]: Torre et al. (2013). doi:10.3389/fncom.2013.00132[11]: Stella et al. (2022). doi:10.1523/ENEURO.0505-21.2022Acknowledgements:Founded by EU Grant 785907 (HBP SGA2), EU Grant 945539 (HBP SGA3), ANR Grant GRASP (France), Helmholtz IVF Grant ZT-I-0003 (HAF), and the Joint-Lab “Supercomputing and Modeling for the Human Brain”.
001005733 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005733 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001005733 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
001005733 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
001005733 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b1$$ufzj
001005733 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b2$$ufzj
001005733 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b3
001005733 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b4$$ufzj
001005733 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
001005733 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b6$$ufzj
001005733 909CO $$ooai:juser.fz-juelich.de:1005733$$pec_fundedresources$$pVDB$$popenaire
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192414$$aForschungszentrum Jülich$$b0$$kFZJ
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b1$$kFZJ
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b2$$kFZJ
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b4$$kFZJ
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
001005733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b6$$kFZJ
001005733 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005733 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001005733 9141_ $$y2023
001005733 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001005733 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001005733 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001005733 980__ $$aposter
001005733 980__ $$aVDB
001005733 980__ $$aI:(DE-Juel1)INM-6-20090406
001005733 980__ $$aI:(DE-Juel1)IAS-6-20130828
001005733 980__ $$aI:(DE-Juel1)INM-10-20170113
001005733 980__ $$aUNRESTRICTED
001005733 981__ $$aI:(DE-Juel1)IAS-6-20130828