001005754 001__ 1005754
001005754 005__ 20240226075429.0
001005754 0247_ $$2doi$$a10.3389/fncel.2021.815552
001005754 0247_ $$2Handle$$a2128/34220
001005754 0247_ $$2pmid$$a35046778
001005754 0247_ $$2WOS$$aWOS:000746515200001
001005754 037__ $$aFZJ-2023-01608
001005754 082__ $$a610
001005754 1001_ $$0P:(DE-HGF)0$$aVan der Linden, Annemie$$b0
001005754 245__ $$aMonitoring Neuronal Network Disturbances of Brain Diseases: A Preclinical MRI Approach in the Rodent Brain
001005754 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
001005754 3367_ $$2DRIVER$$aarticle
001005754 3367_ $$2DataCite$$aOutput Types/Journal article
001005754 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680092060_6281
001005754 3367_ $$2BibTeX$$aARTICLE
001005754 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005754 3367_ $$00$$2EndNote$$aJournal Article
001005754 520__ $$aFunctional and structural neuronal networks, as recorded by resting-state functional MRI and diffusion MRI-based tractography, gain increasing attention as data driven whole brain imaging methods not limited to the foci of the primary pathology or the known key affected regions but permitting to characterize the entire network response of the brain after disease or injury. Their connectome contents thus provide information on distal brain areas, directly or indirectly affected by and interacting with the primary pathological event or affected regions. From such information, a better understanding of the dynamics of disease progression is expected. Furthermore, observation of the brain's spontaneous or treatment-induced improvement will contribute to unravel the underlying mechanisms of plasticity and recovery across the whole-brain networks. In the present review, we discuss the values of functional and structural network information derived from systematic and controlled experimentation using clinically relevant animal models. We focus on rodent models of the cerebral diseases with high impact on social burdens, namely, neurodegeneration, and stroke.Keywords: Alzheimer's disease; Huntington's disease; functional connectivity; neurodegenerative diseases; neuronal networks; rodents; stroke; structural connectivity.
001005754 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001005754 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005754 7001_ $$0P:(DE-Juel1)176651$$aHoehn, Mathias$$b1$$eCorresponding author$$ufzj
001005754 773__ $$0PERI:(DE-600)2452963-1$$a10.3389/fncel.2021.815552$$gVol. 15, p. 815552$$p815552$$tFrontiers in cellular neuroscience$$v15$$x1662-5102$$y2022
001005754 8564_ $$uhttps://juser.fz-juelich.de/record/1005754/files/fncel-15-815552.pdf$$yOpenAccess
001005754 909CO $$ooai:juser.fz-juelich.de:1005754$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176651$$aForschungszentrum Jülich$$b1$$kFZJ
001005754 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001005754 9141_ $$y2023
001005754 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-25
001005754 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005754 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL NEUROSCI : 2021$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:30:24Z
001005754 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:30:24Z
001005754 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005754 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:30:24Z
001005754 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CELL NEUROSCI : 2021$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
001005754 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
001005754 920__ $$lyes
001005754 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001005754 980__ $$ajournal
001005754 980__ $$aVDB
001005754 980__ $$aUNRESTRICTED
001005754 980__ $$aI:(DE-Juel1)INM-3-20090406
001005754 9801_ $$aFullTexts