001005760 001__ 1005760
001005760 005__ 20240129202806.0
001005760 0247_ $$2doi$$a10.3390/genes14020454
001005760 0247_ $$2Handle$$a2128/34215
001005760 0247_ $$2pmid$$a36833381
001005760 0247_ $$2WOS$$aWOS:000939287700001
001005760 037__ $$aFZJ-2023-01614
001005760 082__ $$a570
001005760 1001_ $$0P:(DE-HGF)0$$aGötz, Jan$$b0
001005760 245__ $$aTemporal and Spatial Gene Expression Profile of Stroke Recovery Genes in Mice
001005760 260__ $$aBasel$$bMDPI$$c2023
001005760 3367_ $$2DRIVER$$aarticle
001005760 3367_ $$2DataCite$$aOutput Types/Journal article
001005760 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706531394_27505
001005760 3367_ $$2BibTeX$$aARTICLE
001005760 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005760 3367_ $$00$$2EndNote$$aJournal Article
001005760 520__ $$aStroke patients show some degree of spontaneous functional recovery, but this is not sufficient to prevent long-term disability. One promising approach is to characterize the dynamics of stroke recovery genes in the lesion and distant areas. We induced sensorimotor cortex lesions in adult C57BL/6J mice using photothrombosis and performed qPCR on selected brain areas at 14, 28, and 56 days post-stroke (P14-56). Based on the grid walk and rotating beam test, the mice were classified into two groups. The expression of cAMP pathway genes Adora2a, Pde10a, and Drd2, was higher in poor- compared to well-recovered mice in contralesional primary motor cortex (cl-MOp) at P14&56 and cl-thalamus (cl-TH), but lower in cl-striatum (cl-Str) at P14 and cl-primary somatosensory cortex (cl-SSp) at P28. Plasticity and axonal sprouting genes, Lingo1 and BDNF, were decreased in cl-MOp at P14 and cl-Str at P28 and increased in cl-SSp at P28 and cl-Str at P14, respectively. In the cl-TH, Lingo1 was increased, and BDNF decreased at P14. Atrx, also involved in axonal sprouting, was only increased in poor-recovered mice in cl-MOp at P28. The results underline the gene expression dynamics and spatial variability and challenge existing theories of restricted neural plasticity.Keywords: behavior; cAMP pathway; grid walk; qPCR; recovery rate; rotating beam test.
001005760 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001005760 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001005760 588__ $$aDataset connected to DataCite
001005760 7001_ $$0P:(DE-HGF)0$$aWieters, Frederique$$b1
001005760 7001_ $$0P:(DE-HGF)0$$aFritz, Veronika J.$$b2
001005760 7001_ $$0P:(DE-HGF)0$$aKäsgen, Olivia$$b3
001005760 7001_ $$0P:(DE-HGF)0$$aKalantari, Aref$$b4
001005760 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b5$$ufzj
001005760 7001_ $$0P:(DE-Juel1)196051$$aAswendt, Markus$$b6$$eCorresponding author$$ufzj
001005760 773__ $$0PERI:(DE-600)2527218-4$$a10.3390/genes14020454$$gVol. 14, no. 2, p. 454 -$$n2$$p454 -$$tGenes$$v14$$x2073-4425$$y2023
001005760 8564_ $$uhttps://juser.fz-juelich.de/record/1005760/files/genes-14-00454-v2.pdf$$yOpenAccess
001005760 909CO $$ooai:juser.fz-juelich.de:1005760$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
001005760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196051$$aForschungszentrum Jülich$$b6$$kFZJ
001005760 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001005760 9141_ $$y2023
001005760 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
001005760 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-29
001005760 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
001005760 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
001005760 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005760 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
001005760 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005760 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGENES-BASEL : 2022$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:02:43Z
001005760 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:02:43Z
001005760 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:02:43Z
001005760 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001005760 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001005760 920__ $$lyes
001005760 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001005760 980__ $$ajournal
001005760 980__ $$aVDB
001005760 980__ $$aI:(DE-Juel1)INM-3-20090406
001005760 980__ $$aUNRESTRICTED
001005760 9801_ $$aFullTexts