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Abstract A hyperon–nucleon potential for the strange-
ness S = −1 sector (ΛN , ΣN ) up to third order in
the chiral expansion is presented. SU(3) flavor symmetry
is imposed for constructing the interaction, however, the
explicit SU(3) symmetry breaking by the physical masses
of the pseudoscalar mesons and in the leading-order contact
terms is taken into account. A novel regularization scheme is
employed which has already been successfully used in stud-
ies of the nucleon–nucleon interaction within chiral effec-
tive field theory up to high orders. An excellent description
of the low-energy Λp, Σ− p and Σ+ p scattering data is
achieved. New data from J-PARC on angular distributions
for the ΣN channels are analyzed. Results for the hypertriton
and A = 4 hyper-nuclear separation energies are presented.
An uncertainty estimate for the chiral expansion is performed
for selected hyperon–nucleon observables.

1 Introduction

The hyperon–nucleon (ΛN , ΣN ) interaction has been under
scrutiny in various fields in recent times. Certainly most
prominent has been the discussion of its properties in an
astrophysical context. The discovery of neutron stars with
masses around or in excess of twice the solar mass opened
speculations about the role hyperons and specifically the Λ

play in understanding their characteristics. In particular, at
densities realized in such compact objects, neutrons should
be eventually converted to Λ’s, resulting in a softening of the
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equation-of-state (EoS) and a collapse of the conventional
theoretical explanation of the observed mass-radius relation.
This is the so-called hyperon puzzle, cf. the reviews [1–5]
and references therein. On a less spectacular (speculative)
level, new measurements of ΛN and ΣN scattering have
been reported [6–9], including the first more extensive data
on Σ+ p and Σ− p differential cross sections away from the
threshold. In addition, two-particle momentum correlation
functions involving strange baryons have been determined, in
heavy-ion collision and in high-energy pp collisions, which
allow access to the Y N interaction at very low momenta [10–
13]. Finally, there are ongoing efforts for a better determina-
tion of the binding energies of light Λ hypernuclei [14–16].
On the theory side, lattice QCD simulations have matured
to a stage where an evaluation of the Y N interaction for
quark (pion) masses close to the physical point can be per-
formed [17,18]. Further, ab initio methods like the no-core
shell model (NCSM) have been pushed to a level where cal-
culations of hypernuclei up to A = 10 and beyond can be
performed, incorporating the full complexity of the underly-
ing elementary Y N interaction [19–25].

Chiral effective field theory (EFT) for nuclear systems,
formulated by Weinberg about 30 years ago [26,27], con-
stitutes a rather powerful tool for studying the interaction
between baryons. In this approach a potential is established
via an expansion in terms of small momenta and the pion
mass, subject to an appropriate power counting, so that the
results can be improved systematically by going to higher
orders, while at the same time theoretical uncertainties can
be estimated [28,29]. Furthermore, two- and three-baryon
forces can be constructed in a consistent way. The result-
ing interaction potentials can be readily employed in stan-
dard two- and few-body calculations. They consist of contri-
butions from an increasing number of pseudoscalar-meson
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exchanges, determined by the underlying chiral symmetry,
and of contact terms which encode the unresolved short-
distance dynamics and whose strengths are parameterized by
a priori unknown low-energy constants (LECs). Of course,
there are further LECs related to higher order two-meson
exchanges which can in principle be fixed from meson-
baryon scattering data.

While the description of the nucleon–nucleon (NN ) inter-
action within chiral EFT has already progressed up to the fifth
order and beyond [30–32], corresponding applications of that
framework to the Y N interaction are lagging far behind [33–
37]. Here, NLO is presently the state-of-the-art [38–41]. That
status is primarily a consequence of the unsatisfactory situa-
tion with regard to the data base, practically only cross sec-
tions are available and primarily for energies near the thresh-
olds. In particular, differential observables that would allow
to fix the LECs in P- and/or higher partial waves, which
emerge in the chiral expansion when going to higher orders,
are rather scarce and of low statistics. Only within the last
few years the overall circumstances became more promis-
ing, thanks to the E40 experiment performed at the J-PARC
facility. The measurements have already produced differen-
tial cross sections for the Σ+ p and Σ− p channels for labora-
tory momenta from 440 to 850 MeV/c [7–9] and correspond-
ing studies for Λp, including possibly even spin-dependent
observables, are in the stage of preparation [42].

In this paper, we present a Y N potential up to next-to-
next-to-leading order (N2LO), derived within SU(3) chiral
EFT. The mentioned experimental development was one of
the motivations to extend our study of the ΛN -ΣN interac-
tion to the next order. However, there are also several the-
oretical aspects which make an extension to N2LO rather
interesting. One of them is that in the Weinberg counting
three-baryon forces (3BFs) emerge at this order. Calculations
of the four-body systems 4

ΛH and 4
ΛHe for the NLO13 [38]

and NLO19 [39] potentials based on Faddeev-Yakubovsky
equations indicate that the experimental separation energies
are underestimated and dependent on the version of the YN
interaction [39]. Very likely this signals the need for including
ΛNN and possibly also ΣNN 3BFs [43]. Another appeal-
ing factor is (in view of the mentioned scarcity of data) that
no additional LECs appear at this order. At the same time,
results for NN scattering indicate that there is some improve-
ment in the energy dependence of the S-waves and, specif-
ically, in several P-waves once the contributions involving
the sub-leading πN vertices that enter at N2LO are taken into
account.

A further issue is the dependence on the regulator that
has to be introduced to remove high-momentum components
when solving the scattering equations [44]. In general, a sub-
stantial reduction of the residual regulator dependence can

be achieved by going to high orders with a larger number
of LECs, which then allow one to absorb those effects effi-
ciently [45]. Since our calculation is only up to N2LO, we
want to keep regulator artifacts as small as possible from the
beginning. With regard to that, a novel regularization scheme
proposed and applied in Ref. [31] seems to be rather promis-
ing. Here, a local regulator is applied to the pion-exchange
contributions and only the contact terms, being non-local
by themselves, are regularized with a non-local function.
Accordingly, the resulting interactions are called “semilo-
cal momentum-space regularized (SMS) chiral NN poten-
tials” [31]. In earlier works on the NN interaction but also
in our Y N studies, a non-local cutoff has been applied to
the whole potential [38,39,44]. A local regulator for pion-
exchange contributions leads to a reduction of the distor-
tion in the long-range part of the interaction and, thereby,
facilitates a more rapid convergence already at low chiral
orders. Of course, this effect cannot be directly quantified in
case of ΛN and ΣN because of the lack of more detailed
empirical information, specifically due to the absence of a
proper partial-wave analysis. Nonetheless, given that we aim
at comparing our results with the new J-PARC data at labo-
ratory momenta around 500 MeV/c, a reduction of regulator
artifacts is definitely desirable.

The paper is structured in the following way: In Sect. 2,
we summarize the basics of the employed formalism. More
details are described in an appendix. Our results are pre-
sented in Sect. 3 where we discuss in detail the scattering
cross sections for the channels Λp, Σ+ p and Σ− p. Predic-
tions for S- and P-wave phase shifts in the ΛN and ΣN
(isospin I = 3/2) channels are also provided. Furthermore,
results for the hypertriton and A = 4 hyper-nuclear separa-
tion energies and for the in-medium properties of the Λ and
Σ hyperons are given. Finally, an uncertainty estimate of our
EFT calculations is presented. The paper closes with a brief
summary and an outlook.

2 Formalism

In this section and in Appendix A, we provide a self-
contained description of all the ingredients of the new Y N
interaction and its extension to N2LO. However, we refrain
from repeating here the details of the derivation of the baryon-
baryon interaction within SU(3) chiral EFT. This has been
described and thoroughly discussed in Refs. [34,38] and in
the review [46]. We refer the interested reader to those works.
Also, with regard to various aspects of the new regularization
scheme that forms the basis of the SMS potentials, we refer
to Ref. [31] for details where this procedure was introduced
and worked out.
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2.1 One-boson exchange

Let us start with the one-boson-exchange (OBE) contribution
and with introducing the new regularization scheme. The
formulae for the contributions from two-boson exchanges
which arise at NLO and N2LO are given in Appendix A. The
regularized potential for single-meson exchange VP (P =
π, K , η) has the following form in momentum space:

VOBE
B1B2→B3B4

(q )

= − fB1B3P fB2B4P

(
σ1 · q σ2 · q

q2 + M2
P

+ C(MP ) σ1 · σ2

)

× exp

(
−q2 + M2

P

Λ2

)
IB1B2→B3B4 , (1)

where the fBi B j P are baryon-baryon-meson coupling con-
stants, MP is the mass of the exchanged pseudoscalar meson,
and IB1B2→B3B4 is the pertinent isospin factor. The trans-
ferred momentum q is defined in terms of the final and ini-
tial center-of-mass (c.m.) momenta of the baryons, p′ and
p, as q = p′ − p. We adopt here the convention of Ref.
[31] to include a leading-order contact term in the one-
boson exchange potential. It is chosen in such a way that
the (total) spin-spin part of the potential vanishes for r → 0
in the configuration-space representation. The expression of
C(MP ) which fulfills that requirement can be given in ana-
lytical form and amounts to [31]

C(MP ) = −
[
Λ

(
Λ2 − 2M2

P

)

+2
√

πM3
P exp

(
M2

P

Λ2

)
erfc

(
MP

Λ

) ]
/(3Λ3).

(2)

Here, erfc(x) is the complementary error function

erfc(x) = 2√
π

∫ ∞

x
dt e−t2 . (3)

Under the assumption of strict SU(3) flavor symmetry, the
various coupling constants fBi B j P are related to each other
by [47]

fN Nπ = f, fN Nη8 = 1√
3
(4α − 1) f,

fΛNK = − 1√
3
(1 + 2α) f, fΞΞπ = −(1 − 2α) f,

fΞΞη8 = − 1√
3
(1 + 2α) f, fΞΛK = 1√

3
(4α − 1) f,

fΛΣπ = 2√
3
(1 − α) f, fΣΣη8 = 2√

3
(1 − α) f,

fΣNK = (1 − 2α) f, fΣΣπ = 2α f,
fΛΛη8 = − 2√

3
(1 − α) f, fΞΣK = − f.

(4)

Accordingly, all coupling constants are given in terms of
f ≡ gA/2 f0 and the ratio α = F/(F + D). Here, f0 is

the Goldstone boson decay constant, gA is the axial-vector
strength measured in neutronβ-decay, and F+D = gA. Note
that we will take the physical values of these various parame-
ters, though strictly speaking in the effective Lagrangian they
appear with their values in the chiral limit. This difference
can be absorbed in higher order terms. In the present cal-
culation, deviations of the meson-baryon coupling constants
from the SU(3) values are taken into account. Specifically,
there is an explicit SU(3) symmetry breaking in the empirical
values of the decay constants [48],

fπ = 92.4 MeV,

fK = (1.19 ± 0.01) fπ ,

fη = (1.30 ± 0.05) fπ . (5)

The somewhat smaller SU(3) breaking in the axial-vector
coupling constants, see the pertinent discussion in Appendix B
of Ref. [38], is neglected in the present study. However, fol-
lowing the practice in chiral NN potentials, we use gA =
1.29, which is slightly larger than the experimental value,
in order to account for the Goldberger–Treiman discrepancy.
As before in [38], for the F/(F+D) ratio, we adopt α = 0.4
which is the SU(6) value. Further, the η meson is identified
with the octet-state η8. The isospin factors IB1B2→B3B4 are
summarized in Table 1.

In the NN case, where only pion exchanges are taken
into account, cutoff values in the range Λ = 350–550 MeV
were considered where Λ = 450 MeV yields the best results
[31]. The choice of the cutoff mass for the Y N interaction
is more delicate. On the one hand, we want to preserve the
principal features of the underlying approximate SU(3) fla-
vor symmetry, in particular the explicit SU(3) breaking in
the long-range part of the potential due to the mass splitting
between the pseudoscalar mesons π , K , and η. Since the
kaon mass is around 495 MeV it seems appropriate to use
cutoff masses that are at least 500 MeV, so that the essential
role of the K meson for the Y N dynamics can be incorpo-
rated. At the other end, large values, say 650 MeV or beyond,
lead to highly non-perturbative potentials and bear the risk
of the appearance of spurious bound states, according to the
experience from NN studies [49]. Considering that aspect
implicates that two-meson exchange contributions involving
a K and/or η (πK , KK , etc.), where then the combined
masses exceed the cutoff value, will be strongly suppressed.
Therefore, there is no point to include them explicitly. Rather
their effect should be subsumed into the contact terms. Thus,
contrary to our earlier work [38,39], we expect and allow for
SU(3) symmetry breaking of the LECs in the ΛN and ΣN
systems. In this context, it should be mentioned that also
the counterterms in Eq. (1) constitute effectively an SU(3)
symmetry breaking contact interaction.

In the present work we consider the cutoff values Λ =
500, 550, and 600 MeV. Clearly, for the lowest value η
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Table 1 Isospin factors I for
the various
one–pseudoscalar-meson
exchanges

Channel Isospin π K η

S = 0 NN → NN 0 −3 0 1

1 1 0 1

S = −1 ΛN → ΛN 1
2 0 1 1

ΛN → ΣN 1
2 −√

3 −√
3 0

ΣN → ΣN 1
2 −2 −1 1
3
2 1 2 1

exchange will be already strongly suppressed and, in fact,
we neglected its contribution in this case. The highest value
is well above the masses of the K - and η mesons so that the
effect of the SU(3) symmetry breaking in the masses of the
pseudoscalar mesons on theY N interaction is well accounted
for. In the discussion below we focus predominantly on the
results for Λ = 550 MeV. However, some results, notably
the χ2, the effective range parameters and the hypertriton and
A = 4 separation energies will be given for all three cutoffs
in order to provide an overview of the quality of our chiral
Y N interactions. Anticipating the results, we stress that an
equally good description of the considered Y N , Y NN and
A = 4 hyper-nuclear observables can be achieved for all
three cutoffs.

At leading order (LO), only a very basic description of the
Y N interaction can be obtained [34]. In particular, unrealistic
small scattering lengths emerge from fits to the low-energy
data under the prerequisite that the lightest Λ hypernuclei are
not too strongly bound. Nonetheless, we construct also a LO
interaction in the present study because we want to perform
an uncertainty estimate of our chiral Y N potentials follow-
ing the procedure proposed in Ref. [45]. It turns out that
under the assumption of SU(3) symmetry (note that SU(3)
breaking contact terms arise first at NLO [50]) a LO fit with
a decent χ2 is only possible for a cutoff of Λ = 700 MeV
and without subtraction. For smaller cutoffs, the χ2 increases
dramatically. We use that potential for the uncertainty esti-
mate below but do not discuss its result in detail. Anyway,
the LO results (χ2 ≈ 30, aΛN

s = −2.1 fm, aΛN
t = −1.2 fm)

are very similar to those based on a non-local cutoff reported
in Ref. [34].

2.2 Contact terms

The spin dependence of the potentials due to the LO contact
terms is given by [26]

V (0)
BB→BB = CS + CT σ 1 · σ 2, (6)

where the parameters CS and CT are low-energy constants
(LECs) depending on the considered baryon-baryon channel.

These need to be determined by a fit to data. At NLO the spin-
and momentum-dependence of the contact terms reads

V (2)
BB→BB = C1q 2 + C2k 2 + (C3q 2 + C4k 2) σ 1 · σ 2

+ i

2
C5(σ 1 + σ 2) · (q × k) + C6(q · σ 1)(q · σ 2)

+C7(k · σ 1)(k · σ 2) + i

2
C8(σ 1 − σ 2) · (q × k)

(7)

where the Ci (i = 1, . . . , 8) are additional LECs and k is
the average momentum defined by k = (p′ + p)/2. When
performing a partial-wave projection, these terms contribute
to the two S–wave (1S0, 3S1) potentials, the four P–wave
(1P1, 3P0, 3P1, 3P2) potentials, and the 3S1-3D1 and 1P1-
3P1 transition potentials in the following way [44] (note that
due to the absence of the Pauli principle, there is one more
term than in the NN case):

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2) , (8)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2) , (9)

V (3D1 − 3S1) = C3SD1
p′2 , (10)

V (3S1 − 3D1) = C3SD1
p2 , (11)

V (3P0) = C3P0
p p′ , (12)

V (1P1) = C1P1
p p′ , (13)

V (3P1) = C3P1
p p′ , (14)

V (3P1 − 1P1) = C3P1−1P1
p p′ , (15)

V (1P1 − 3P1) = C1P1−3P1
p p′ , (16)

V (3P2) = C3P2
p p′ , (17)

with p = |p | and p′ = |p ′|. C̃α and Cα are appropriate
combinations of the Ci ’s appearing in Eqs. (6) and (7), see
Ref. [38].

Assuming only isospin symmetry, the LECs for each spin-
isospin state of the BB → BB potentials are independent.
When imposing SU(3) flavor symmetry one obtains relations
between the LECs in the strangeness S = 0 and S = −1
systems, see Table 2, so that the total number of indepen-
dent terms is noticeably reduced [38]. Specifically, for the
partial waves relevant at low energies, 1S0 and 3S1, within
SU(3) symmetry there are only 10 independent LECs (5 at
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Table 2 SU(3) relations for the interactions in different B1B2 → B3B4 channels, with isospin I and strangeness S. C27
ξ etc. refers to the

corresponding irreducible SU(3) representation for a particular partial wave ξ [34,38]

Channel I V (ξ)

ξ = 1S0,
3P0,

3P1,
3P2 ξ = 3S1,

3S1–3D1,
1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

ξ + C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

) −1√
20
C8s8a

ξ

ΛN → ΣN 1
2

3
10

(
−C27

ξ + C8s
ξ

)
1
2

(
−C8a

ξ + C10∗
ξ

) −3√
20
C8s8a

ξ

ΣN → ΛN 1√
20
C8s8a

ξ

ΣN → ΣN 1
2

1
10

(
C27

ξ + 9C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

)
3√
20
C8s8a

ξ

ΣN → ΣN 3
2 C27

ξ C10
ξ –

LO and 5 at NLO) altogether, whereas with isospin symmetry
alone there would be 16. Like in our previous studies [38,39],
we impose SU(3) constraints on the LECs. However, for the
reasons discussed above, those constraints are relaxed in the
course of the fitting procedure whenever required for improv-
ing the description of the Λp and ΣN low-energy data. In
practice, a departure from SU(3) symmetry is only necessary
for the LO S-wave LECs, which is anyway in line with the
employed power counting, see Refs. [38] (Appendix B) and
[50].

Note that we do not consider the possible 1P1-3P1 tran-
sition at the present stage. In principle, one could fix the
pertinent LECs which correspond to an antisymmetric ΛN -
ΣN spin-orbit force, c.f. the term involving C8 in Eq. (7),
by considering the Scheerbaum factor [51] in nuclear mat-
ter as done by us in Refs. [52,53]. However, we intend to
extend our calculations of Λ-hypernuclei within the NCSM
approach [22,25] up to A = 9 systems in the future. Then we
can directly use the empirical information on the level split-
ting of the 9

ΛBe hypernucleus [54] to investigate the strength
needed for the elementary antisymmetric spin-orbit force.

2.3 Scattering equation

Once the Y N potential is established, a partial-wave projec-
tion is performed [34] and the (ΛN or ΣN ) reaction ampli-
tudes are obtained from the solution of a coupled-channel
Lippmann–Schwinger (LS) equation,

T �′′�′,J
ν′′ν′ (p′′, p′;√

s) = V �′′�′,J
ν′′ν′ (p′′, p′)

+
∑
�,ν

∫ ∞

0

dpp2

(2π)3 V �′′�,J
ν′′ν (p′′, p)

× 2μν

k2
ν − p2 + iη

T ��′,J
νν′,J (p, p′;√

s).

(18)

The label ν indicates the channels and the label � the
partial wave. μν is the pertinent reduced mass. The on-
shell momentum in the intermediate state, kν , is defined by√
s =

√
m2

B1,ν
+ k2

ν +
√
m2

B2,ν
+ k2

ν . Relativistic kinemat-

ics is used for relating the laboratory momentum plab of the
hyperons to the c.m. momentum. For evaluating phase shifts,
the LS equation is solved in the isospin basis. For observ-
ables, all calculations are performed in the particle basis,
so that the correct physical thresholds can be incorporated.
The Coulomb interaction (in the Σ− p and Σ+ p channels)
is taken into account appropriately via the Vincent-Phatak
method [61].

3 Results

In fitting to the Y N data we proceed as before [38,39], i.e.
we consider the set of 36 data for Λp, Σ− p and Σ+ p scat-
tering at low energies [55–60] for determining the LECs in
the S-waves. And, like before, as additional constraint, we
require the hypertriton to be bound, which enables us to fix
the relative strength of the singlet- and triplet S-waves in the
Λp channel, see Sect. 3.4 for more details. SU(3) symmetry
is imposed for the contact terms at the initial stage but even-
tually relaxed for the LO LECs, C̃1S0

and C̃3S1
in Eqs. (8,11),

in line with the power counting where SU(3) breaking terms
arise from mass insertions in the chiral Lagrangian at the
NLO level [50]. Anyway, as said, we do expect some SU(3)
breaking in the contacts terms in view of the fact that two-
meson exchange contributions from πK , πη, etc. are not
explicitly included. The achieved χ2 is comparable to the
one found for our NLO interactions [38,39], and typically
around 16 for the 36 data points, see Table 3. An overview
of the scattering lengths and effective ranges for the various
Y N channels is provided in Table 4. Preliminary results have
been reported in Ref. [62].
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Table 3 Comparison between the 36 Y N data and the theoretical results for the various cutoffs in terms of the achieved χ2. The last two columns
are results for the NLO13 [38] and NLO19 [39] Y N potentials

Λ (MeV) Data SMS NLO SMS N2LO NLO13 NLO19

500 550 600 500 550 600 600 600

Λp → Λp Sechi-Zorn [55] 1.8 1.6 1.5 1.9 1.9 1.8 1.4 1.9

Alexander [56] 2.2 2.5 2.7 2.0 2.1 2.2 3.0 1.6

Σ− p → Λn Engelmann [57] 3.6 3.8 4.0 3.6 4.0 3.6 4.1 4.0

Σ− p → Σ0n Engelmann [57] 5.9 5.8 5.8 5.9 5.9 5.9 5.8 6.0

Σ− p → Σ− p Eisele [58] 1.9 1.8 1.8 2.0 1.9 1.9 1.9 2.2

Σ+ p → Σ+ p Eisele [58] 0.1 0.3 0.4 0.2 0.2 0.3 0.5 0.4

rR [59,60] 0.1 0.0 0.0 0.3 0.1 0.1 0.1 0.1

total χ2 15.5 15.7 16.2 15.8 15.6 15.7 16.8 16.3

Table 4 Scattering lengths (a) and effective ranges (r ) for singlet (s) and triplet (t) S-waves (in fm), for ΛN , ΣN with isospin I = 1/2, 3/2, and
for Σ+ p with inclusion of the Coulomb interaction

Λ [MeV] SMS NLO SMS N2LO NLO13 NLO19

500 550 600 500 550 600 600 600

aΛN
s −2.80 −2.79 −2.79 −2.80 −2.79 −2.80 −2.91 −2.91

rΛN
s 2.87 2.72 2.63 2.82 2.89 2.68 2.78 2.78

aΛN
t −1.59 −1.57 −1.56 −1.56 −1.58 −1.56 −1.54 −1.41

rΛN
t 3.10 2.99 3.00 3.16 3.09 3.17 2.72 2.53

ReaΣN (I=1/2)
s 1.14 1.15 1.10 1.03 1.12 1.06 0.90 0.90

ImaΣN
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ReaΣN (I=1/2)
t 2.58 2.42 2.31 2.60 2.38 2.53 2.27 2.29

ImaΣN
t −2.60 −2.95 −3.09 −2.56 −3.26 −2.64 −3.29 −3.39

aΣN (I=3/2)
s −4.21 −4.05 −4.11 −4.37 −4.19 −4.03 −4.45 −4.55

rΣN
s 3.93 3.89 3.75 3.73 3.89 3.74 3.68 3.65

aΣN (I=3/2)
t 0.46 0.47 0.47 0.38 0.44 0.41 0.44 0.43

rΣN
t −5.08 −4.74 −4.82 −5.70 −4.96 −5.72 −4.59 −5.27

aΣ+ p
s −3.41 −3.30 −3.44 −3.47 −3.39 −3.25 −3.56 −3.62

rΣ+ p
s 3.75 3.73 3.59 3.61 3.73 3.65 3.54 3.50

aΣ+ p
t 0.51 0.52 0.52 0.41 0.48 0.45 0.49 0.47

rΣ+ p
t −5.46 −5.12 −5.19 −6.74 −5.50 −6.41 −5.08 −5.77

In the detailed discussion of the results, we focus on the
ones for the cutoff 550 MeV. Those for the other considered
cutoffs, 500 and 600 MeV, are very similar as one can con-
jecture from the χ2 values. Also, we start with the ΣN chan-
nels where new data from the J-PARC E40 experiment have
become available [7–9]. Here, Σ+ p scattering is of particular
interest for theory since it is a pure isospin I = 3/2 system.
Thus, there is no coupling to the ΛN channel which sim-
plifies the dynamics. Moreover, there are, in principle, rather
restrictive constraints from SU(3) symmetry. Specifically, the
space-spin antisymmetric states (1S0, 3P0,1,2,...) belong all to

the {27} irrepresentation (irrep) of SU(3) (cf. Table 2) [38,39]
and thus the corresponding interactions would be identical
to those in the NN system provided that SU(3) symmetry
is exactly fulfilled. While there is a sizable SU(3) symmetry
breaking in case of the 1S0 partial wave [63], the amplitudes
in the P- and higher partial waves could be much closer to
those found for NN scattering.

Note that the cross sections in the Σ+ p → Σ+ p and
Σ− p → Σ− p channels in past studies were obtained from
experiments with an incomplete angular coverage by defining
[58]
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Fig. 1 Cross section for Σ+ p scattering as a function of plab. Results
are shown for the SMS NLO (dash-dotted) and N2LO (solid) Y N poten-
tials with cutoff 550 MeV. The dashed line corresponds to an alternative
fit at N2LO, see text. The cyan band is the result for NLO19 [39]. The

dotted line is the result for NLO19 (600) with readjusted C3SD1
, see

text. Data are from the E40 experiment [9] for the momentum regions
440–550 and 550–650 MeV/c, respectively, and from Refs. [58,64]

σ = 2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ. (19)

We use the same prescription, and specifically cos θmin =
−0.5 and cos θmax = 0.5, for obtaining “integrated” Σ+ p
and Σ− p cross sections.

3.1 The Σ+ p channel

Σ+ p scattering cross sections for the SMS Y N interactions
are presented in Fig. 1, and compared with data and with
the results obtained from the NLO19 potential. The latter are
shown as bands, representing the cutoff dependence [39].
On the upper left side the cross section at low energies is
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displayed. This is the region with the data of Eisele et al. [58],
which are included in the fitting procedure for the S-wave
LECs. One can see that the results for the SMS potentials
are slightly below those of NLO19. The main reason for that
is that we no longer impose strict SU(3) constraints on the
S-wave contact terms.

Once the S-wave LECs are fixed from a combined fit to
the Λp and ΣN cross sections, the differential cross sections
established in the E40 experiment are analyzed. Interestingly,
in the NLO case taking over the LECs from the correspond-
ing NN potential by Reinert et al. [31] for the 3P0,1,2 par-
tial waves, in accordance with SU(3) symmetry, and assum-
ing the LEC in the 1P1 to be zero, yields already a good
description of the E40 data in the region 440–550 MeV/c,
cf. Figure 1 (center of the lower panel). For the N2LO inter-
action all P-wave LECs are adjusted to the data. Actually,
here we explore two scenarios (denoted by the superscripts
a and b in the tables below so that one can distinguish them),
one where the resulting angular distribution is similar to that
obtained for NLO (solid line) and one which produces an
overall more pronounced angular dependence (dashed line).
The latter is clearly preferred by the available data in that
momentum range. However, a view on the situation in the
next momentum region, 550–650 MeV/c, see Fig. 1 (lower
right), tells us that one has to be careful with conclusions.
Here the experiment suggest an overall somewhat different
angular dependence, which seems to be more in line with a
flat behavior or a very moderate increase in forward direction.
In any case, note that the alternative fit provides an at least
visually slightly better description of the old low-energy data
(lower left). Indeed, those data from the momentum region
160–180 MeV/c [58] (Tlab ≈ 12 MeV) seem to exhibit a
more pronounced angular dependence than the E40 data at
much higher momenta. Thus, it would be very interesting to
explore the energy region in between by experiments. Such
data could also help to pin down the P-wave contributions
more reliably since higher partial waves should be much less
important. For completeness, let us mention that the fitting
ranges considered for establishing the SMS NN potential are
plab � 480 MeV/c at NLO and plab � 540 MeV/c at N2LO
[31].

The predictions by NLO19 are definitely at odds with
the E40 experiment. However, it should be said that the
pronounced rise of the cross section for backward angles,
excluded by the data, is mainly due to an accidental choice
of the LEC C3SD1

in the ΣN I = 3/2 contact interaction
in [38,39]. Its value can be easily re-adjusted, without any
change in the overall quality of those Y N potentials. Perti-
nent results, for NLO19(600) as example, are indicated by
dotted lines in Fig. 1.

The integrated Σ+ p cross section over a larger energy
range is shown in Fig. 1 (upper right). Note that again the
angular averaging according to Eq. (19) is applied to the the-

Fig. 2 ΣN I = 3/2 phase shifts: P-waves. Same description of the
curves as in Fig. 1. For illustrating the extent of SU(3) symmetry break-
ing, NN phase shifts [65,66] for partial waves in the pertinent {27} irrep
are indicated by circles

ory results. It is likewise done to obtain the indicated E40
data points because only differential cross sections in a lim-
ited angular range are available [9]. Once more the NLO19
potential does not reproduce the trend of the data. Specifi-
cally, contrary to the experiment, there is a rise of the cross
section for larger plab which we observed also for NLO13
and which seems to be present also in results by the so-called
covariant chiral EFT [35,37]. This rise is due to an artifi-
cial behavior of the 3S1 partial wave, presumably caused by
the non-local regulator employed in our NLO13 and NLO19
potentials. Anyway, since plab = 600 MeV/c corresponds
to a laboratory energy of Tlab ≈ 150 MeV, one is certainly
in a region where NLO and possibly even N2LO cannot be
expected to be still quantitatively reliable. In this context, one
should keep in mind that the ΛNπ channel opens around that
energy which clearly marks the formal limit for the applica-
bility of any effective two-body potential. However, whether
the noticeable drop in the experimental cross section, which
can not be reproduced by theory, has something to do with
the opening of that channel or not, remains unclear at present.

The authors of Ref. [9] have attempted to perform a phase-
shift analysis, including partial waves up to the total angular
momentum of J = 2, with the aim to determine the phase
in the 3S1 channel. For that different scenarios have been
considered where the phase shifts in the partial waves in the
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Fig. 3 ΣN I = 3/2 phase shifts: 1S0 and 3S1–3D1. Same description
of the curves as in Fig. 1

{27} irrep of SU(3), cf. Table 2, were fixed either from NN
results (exploiting SU(3) symmetry) or from predictions of
Y N models. Earlier efforts for establishing the ΣN I = 3/2
phase shifts, based on the differential cross section of Eisele
et al. (lower-left of Fig. 1), can be found in Refs. [72,73].
Our predictions for the phase shifts are displayed in Figs. 2
and 3. For illustration we include the NN phase shifts in the
3P0,1,2 partial waves (circles) which, as said, would be iden-
tical to the ones for ΣN with I = 3/2 under strict validity
of SU(3) symmetry. It is interesting to see that the difference
is indeed fairly small. In comparison, the predictions of the
chiral potentials for 1P1, not constrained by SU(3), vary siz-
ably. The results for the 1S0 and 3S1 partial waves shown in
Fig. 3 are, of course, strongly constrained by the available
low-energy cross section data. The behavior of the 1S0 is
qualitatively similar to that in the NN case [31], as expected
from the approximate SU(3) symmetry. One can observe a
large difference in the results for the mixing angle ε1 between
the SMS Y N potentials and NLO19. As discussed above, its
large value is the reason for the rise of the cross section at
backward angles, cf. Fig. 1. At the time when NLO19 and
NLO13 were established, the existing data did not allow to
fix the relevant LEC (C3SD1

) reliably. However, it can be re-
adjusted (see the dotted line) without changing the overall
χ2 and then the pertinent results can be brought in line with
the E40 measurement.

3.2 The Σ− p channel

Results for Σ− p elastic scattering are presented in Fig. 4.
The SMS Y N potentials produce a slightly weaker energy
dependence of the integrated cross section than NLO19.
In the momentum region of the new E40 data [7], plab =
500–700 MeV/c, the predictions of all our Y N potentials
are similar and in agreement with the experiment. Also the
differential cross sections agree with the experiment, cf.
the lower panel of Fig. 4. It should be said, however, that
the proper behavior in forward direction remains somewhat
unclear since the experimental information is too sparse in
that angular region. Nonetheless, the data points available
for the momentum region 550–650 MeV/c could point to a
somewhat steeper rise for small angles. The predictions based
on NLO19 exhibit a sizable cutoff dependence. It is due to
the fact that the hadronic amplitude is overall attractive for
some cutoffs and repulsive for others so that there is either
a destructive or constructive interference with the attractive
Coulomb interaction. In case of a destructive interference
there is a small dip in the differential cross section at very
forward angles. Data with high resolution would be needed
in order to resolve that issue.

Results for the transition Σ− p → Λn are presented in
Fig. 5. Also in this case the predictions of the SMS Y N
potentials and those of NLO19 are rather similar. Specifi-
cally, all interactions yield a reaction cross section in line
with the E40 data [8]. The angular distributions are likewise
reproduced, cf. Fig. 5 (center and left of the lower panel). One
should keep in mind that in case of NLO19 no actual fitting
of the P-wave LECs was performed. The ones belonging to
the {27} and {10∗} irreps were taken over from fits to NN P-
waves, exploiting SU(3) symmetry constraints, whereas the
others were fixed qualitatively by requiring that the contri-
bution of each P-wave to the Λp cross section for momenta
above the ΣN threshold remains small [38]. We note that
for Σ− p → Λn partial waves up to J = 8 are needed to
achieve converged results for the differential cross section at
600 MeV/c.

In the context of the inelastic Σ− p data by Engelmann et
al. [57], we would like to point to a footnote in that paper
which emphasizes the role of the Σ− lifetime in their deter-
mination of the cross sections. The fact that the present value
is almost 10 % smaller [74] suggests that the actual cross
sections could be smaller, too.

There are no new data for the charge-exchange reaction
Σ− p → Σ0n. The predictions of chiral EFT are in agree-
ment with the existing experimental evidence, as one can see
in Fig. 6.
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Fig. 4 Cross section for Σ− p scattering as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40 Collaboration [7]
for the momentum regions 470–550 and 550–650 MeV/c, respectively, and from Refs. [58,67]

3.3 The Λp channel

Results for Λp scattering are presented in Fig. 7. So far
there are no data from J-PARC for this channel. The new
Λp data from CLAS/Jlab [6] are at fairly high momenta
(plab ≥ 900 MeV/c) so that a quantitative comparison
with our NLO and N2LO predictions is not really sensible.
Nonetheless, we display the momentum region up to their
lowest data point (inverted triangle) so that one can see that
the trend of our predictions is well in line with that mea-

surement. Anyway, the low-energy data are reproduced with
similar quality by all chiral potentials, as expected in view of
the excellent and low χ2 achieved in all fits. It is interesting
though that even the predicted cusp at the ΣN threshold is
practically identical, cf. Fig. 7 (upper right). This testifies that
the actual shape of the cusp is to a large extent determined
by the ΣN low-energy data [75] which, of course, are all
described well by the considered Y N potentials as discussed
above.
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Fig. 5 Cross section for Σ− p → Λn as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40 Collaboration [8]
for the momentum regions 470–550 and 550–650 MeV/c, respectively, and from Refs. [57,60]

There are no genuine differential cross sections available
for Λp scattering. However, some data on the angular dis-
tribution and the forward/backward ratio can be found in
Refs. [55,56]. Those are shown in the lower panel of Fig. 7
and compared with predictions normalized to the number of
events. Evidently, all our chiral potentials predict the trend
of the data that indicate a rise of the cross section in forward
direction. The present data would favor a more pronounced
angular dependence as produced by one of the N2LO inter-

actions (solid line). But for a quantitative conclusion more
accurate data are needed. Also measurements for somewhat
higher momenta, closer to the ΣN thresholds, would be quite
instructive [39]. Such data are expected to be provided by the
future E86 experiment at J-PARC [42].

Results for ΛN phase shift in the S- and P-waves are
shown in Figs. 8 and 9. Like in case of ΣN discussed
above, the predictions for the 1S0 and 3S1 partial waves are
strongly constrained by fitting the cross section data. And,
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Fig. 6 Cross section for
Σ− p → Σ0n as a function of
plab. Same description of the
curves as in Fig. 1. Data are
from Refs. [57,60]

as already mentioned, like in our previous works [38,39,76]
the empirical binding energy of the hypertriton 3

ΛH is used
as a further constraint. Thereby we can exploit the fact that
the spin-singlet and triplet amplitudes contribute with differ-
ent weights to the Λp cross section and to the 3

ΛH binding
energy, see Eq. (9) in [39]. Without that feature it would
not be possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave components of the Λp interaction. A
more detailed discussion on the hypertriton will be provided
in the next subsection. However, we want to mention already
here that we fixed the strength in the spin-singlet interac-
tion based on some exploratory calculations with SMS NLO
(550). The resulting scattering length, as ≈ −2.80 fm, was
then used to adjust all other NLO and N2LO interactions.
This value is slightly smaller in magnitude that what has
been found and used for the NLO13 and NLO19 interactions
with non-local cutoff, see Table 4. Nonetheless, the chiral
Y N interactions with the new regularization scheme tend to
be overall slightly more attractive. This is best seen in Fig. 8
from the 1S0 phase shifts, where the predictions by the SMS
potentials drop off more slowly with increasing momentum
as compared to those of our former Y N interactions.

As discussed in Ref. [75], most of the Y N potentials, that
include the ΛN -ΣN coupling and provide a quantitative
description of the data, predict an unstable ΣN bound state
near the ΣN threshold. This is reflected in the behavior of
the 3S1-3D1 phase shifts, where either the 3S1 or 3D1 phase
pass through 90◦ [34,38]. In case of the SMS potentials this
happens in the 3D1 state. Note that for convenience, and to
keep the scales of the figures commensurable, we show the
results in Fig. 8 modulo 180◦.

The results for the P-waves are qualitatively rather similar,
except for the 1P1 where the NLO19 prediction is of opposite
sign. Certainly, the 3P states are all dominated by the {27}
irrep of SU(3) (Table 2) and, thus, strongly constrained by
fixing the pertinent LECs in a fit to the NN phases (in case
of NLO19 and SMS NLO) and to the new Σ+ p data (in
the SMS N2LO Y N potentials). It will be interesting to see
whether those predictions are consistent with Λp differential
cross sections, once such data become available from J-PARC
[42].

Recently, the Λp two-particle momentum correlation
function has been measured with high precision by the
ALICE Collaboration in pp collisions at 13 TeV [12]. An
exploratory analysis of those data suggests that the Λp inter-
action could be slightly less attractive than what follows from
the low-energyΛp cross section data [55,56]. However, since
additional ingredients and parameters are required for a more
detailed evaluation [77–79], those data cannot be included
straightforwardly into our fitting procedure. Therefore, we
refrain from taking into account constraints provided by such
correlation functions at the present stage.

Finally, we want to mention that there are data for the
Λ polarization, α P̄(θ∗

Λ), for forward and backward angles,
see Table II of Ref. [56]. α is the weak decay parameter of
the Λ [74]. These suggest that the polarization is practically
consistent with zero for plab ≤ 320 MeV/c. Since the experi-
mental uncertainties are rather large, we do not display these
data here. However, we want to mention that the results of
the SMS potentials for αP in that momentum region are all
smaller than 0.1. Also, we would like to point to Ref. [42]
where results of NLO13 and NLO19 for the Λp analyzing

123



Eur. Phys. J. A            (2023) 59:63 Page 13 of 26    63 

100 200 300 400 500 600 700 800 900 1000

plab (MeV/c)

0

100

200

300

σ 
(m

b)
Sechi-Zorn et al.
Alexander et al.
Hauptman et al.
Piekenbrock
Rowley et al.

Λp -> Λp

500 600 700 800

plab (MeV/c)

0

10

20

30

40

50

60

70

σ 
(m

b)

Kadyk et al.
Hauptman et al.

Λp -> Λp

Σ+n -> <- Σ0p

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

10

20

30

40

50

no
. o

f e
ve

nt
s

Sechi-Zorn (1968)

Λp -> Λp

plab = 180-248 MeV/c

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

10

20

30

40

50

no
. o

f e
ve

nt
s

Sechi-Zorn (1968)

Λp -> Λp

plab = 248-330 MeV/c

100 200 300 400 500
plab (MeV/c)

0

1

2

3

dσ
/ d

Ω
  f

or
w

ar
d/

ba
ck

w
ar

d 
ra

tio
 

Alexander (1968)
Sechi-Zorn (1968)

Λp -> Λp

Fig. 7 Cross section for Λp as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [55] (filled circles), [56] (filled
squares), [68,69] (open triangles), [70] (open squares), [71] (open circles) and [6] (inverted triangles)

power are shown, and where one can see that those predic-
tions are likewise rather small at low momenta.

3.4 A = 3 and A = 4 Λ hypernuclei

The binding energy of the hypertriton is obtained by solving
Faddeev equations in momentum space. This method is well
suited for the chiral Y N and NN potentials which involve
local as well as non-local components. A detailed description
of the formalism can be found in [80,81]. In the discussion,

we focus on the separation energy which is the difference
between the hypertriton binding energy and that of the core
nucleus, i.e. that of the deuteron. As shown by us in Ref.
[39], the Λ separation energies of light hypernuclei are not
very sensitive to the employed NN interaction. Therefore, we
use in all calculations the same state-of-the-art chiral NN
interaction, namely the SMS NN potential of Ref. [31] at
order N4LO+ with cutoff Λ = 450 MeV. The variation of the
separation energy with the cutoff of the chiral NN potentials
is only in the order of 10 keV, see Table 3 of Ref. [39]. Note
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Fig. 8 ΛN phase shifts: 1S0 and 3S1–3D1. Same description of the
curves as in Fig. 1. The results for the 3S1 and 3D1 phases are shown
modulo 180◦

Fig. 9 ΛN phase shifts: P-waves. Same description of the curves as
in Fig. 1

that some recent studies suggest a larger dependence on the
NN potential [82,83]. This is in part due to using lower order
NN interactions but also because the dependence on the NN
interaction seems to be larger for the LO Y N interactions.
We are currently investigating the NN force dependence in
more detail [84]. Our preliminary results confirm the small
NN force dependence of the order of 10 keV for the NLO
and N2LO calculations presented here. The dependence is
certainly much smaller than the experimental uncertainty of
±40 keV.

As already mentioned, we require the hypertriton to be
bound as an additional constraint for our Y N interaction.
However, we do not include the 3

ΛH separation energy in
the actual fitting procedure because of its large experimental
uncertainty. While for a long time the value given by Jurič et
al. [85], BΛ = 0.13 ± 0.05 MeV, has been accepted as the
standard, recent measurements reported by the STAR and
ALICE Collaborations indicate that the separation energy
could be either significantly larger (0.41 ± 0.12 ± 0.11 MeV
[14]) or somewhat smaller (0.072 ± 0.063 ± 0.036 MeV
[15]). The latest average from the Mainz Group is 0.148 ±
0.040 MeV [86]. New high-precision experiments to deter-
mine the hypertriton binding energy are planned at the Mainz
Microtron (MAMI) [86] and at JLab [87] and will hopefully
resolve those discrepancies.

Given these variations, as a guideline of the present work,
we aimed at achieving a 3

ΛH separation energy in the order of
150 keV with our chiral Y N interactions. An arbitrary fine-
tuning to one or the other value is not really meaningful at
the present stage. It would be also questionable in view of the
fact that there should be a contribution from chiral three-body
forces (3BF) [43]. Those could contribute up to 50 keV to the
binding, as argued in Ref. [39]. Incidentally, since the present
experimental uncertainties exceed that estimation, there is no
way of fixing the pertinent 3BF LECs from the hypertriton
and, therefore, we refrain from including 3BFs in the present
work. A possible and viable way to fix the 3BFs is, in our
opinion, via studies of the 4

ΛH/4ΛHe and 5
ΛHe systems and we

intend to explore that option in the future.
Results of the SMS Y N potentials for the hypertriton sep-

aration energy are summarized in Table 5. It is interesting to
see that the predicted values lie fairly close together, keeping
in mind, of course, that the NLO and N2LO potentials have
been all tuned to the sameΛN scattering length in the 1S0 par-
tial wave. Evidently, the separation energies are well in line
with the experimental values by Jurič et al. and agree also
with the new ALICE measurement within the uncertainty.
Compared to the previous chiral Y N interactions NLO13
and NLO19, the separation energies are slightly larger indi-
cating that the new interactions are more attractive than the
previous ones.

It is now interesting to apply the same interactions to a
more densely bound system, namely 4

ΛHe. For this hypernu-
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Table 5 Overview of results for the hypertriton up to N2LO and for the Λ and Σ single-particle potentials in symmetric nuclear matter at saturation
density

Y N potential BΛ [MeV] E [MeV] PΣ [%] UΛ(0) UΣ(0)

SMS LO(700) 0.135 −2.359 0.20 −37.8 10.2

SMS NLO(500) 0.127 −2.350 0.28 −30.1 0.2

SMS NLO(550) 0.124 −2.347 0.23 −32.1 −1.6

SMS NLO(600) 0.122 −2.345 0.32 −29.7 −3.1

SMS N2LO(500) 0.147 −2.371 0.25 −33.1 6.4

SMS N2LO(550)a 0.139 −2.362 0.25 −38.5 2.5

SMS N2LO(550)b 0.125 −2.348 0.24 −35.9 2.5

SMS N2LO(600) 0.172 −2.395 0.22 −37.8 0.1

NLO13(600) 0.090 −2.335 0.25 −21.6 17.1

NLO19(600) 0.091 −2.336 0.21 −32.6 16.9

The superscripts a and b denote the two variants introduced in Sect. 3.1 with different P-wave interactions. For the NN interactions SMS
N4LO+(450) is used [31]. The NLO13 and NLO19 results are from [39]

Table 6 Overview of results for the 4
ΛHe separation energy up to N2LO

4
ΛHe

Jπ = 0+ Jπ = 1+

Y N potential BΛ [MeV] PΣ [%] BΛ [MeV] PΣ [%]

SMS LO (700) 3.088 1.36 2.275 1.72

SMS NLO (500) 2.009 2.32 1.041 2.05

SMS NLO (550) 2.102 2.13 1.102 1.96

SMS NLO (600) 2.021 2.34 0.927 1.69

SMS N2LO (500) 2.001 2.01 1.002 2.07

SMS N2LO (550)a 2.024 1.81 1.251 2.01

SMS N2LO (550)b 1.969 1.82 1.188 1.99

SMS N2LO (600) 2.263 1.79 1.181 1.81

NLO13 (600) 1.477 2.02 0.580 1.51

NLO19 (600) 1.461 1.37 1.055 1.68

The superscripts a and b denote the two variants introduced in Sect. 3.1 with different P-wave interactions. For the NN interactions SMS
N4LO+(450) [31] is used. For our new SMS results, we also apply the properly adjusted three-nucleon interaction (see [88]). The NLO13 and
NLO19 results are from [39]

cleus, charge symmetry breaking (CSB) is expected to con-
tribute of the order of 100 keV to the separation energies
[89,90]. We do not include CSB terms here and likewise no
Y NN interactions since for now we are only interested in a
first comparison with our previous calculations for NLO13
and NLO19. Without CSB interactions, the mirror hyper-
nuclei 4

ΛHe and 4
ΛH have very similar separation energies.

Therefore, we only present results for 4
ΛHe.

The binding energy for A = 4 hypernuclei are obtained
by solving Yakubovsky equations in momentum space [81].
Such calculations require a large number of partial wave
states for being converged. We have used here all partial
waves with orbital angular momenta up to l = 6 and a sum
of the three orbital angular momenta related to the three rel-
ative momenta necessary up 8. With this restriction of partial

waves, our accuracy is of the order of 50 keV for the separa-
tion energies.

The results are summarized in Table 6. It can be seen
that the trend to larger separation energies applies also for
A = 4. In particular, for the Jπ = 0+ ground state, the ener-
gies are now significantly closer to the experiment, where
the current average value is 2.347 ± 0.036 MeV [91]. Also
for the Jπ = 1+ excited state the predictions are close
to the empirical value. Here the experimental average is
0.942 ± 0.036 MeV. In this case the separation energies are
also similar to those obtained for the NLO19 interaction [39].
These results indicate that the state/spin dependence of ΛNN
(and/or ΣNN ) three-body forces should be different for the
new series of interactions compared to NLO19 and NLO13.
In any case it is interesting to see that the SMS interactions
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lead to larger Σ probabilities than NLO19. In past calcula-
tions it was observed that such larger contributions of Σ’s
to the hypernuclear states usually lead to smaller binding
energies, c.f. the comparison of NLO13 and NLO19.

3.5 Λ and Σ in nuclear matter

For completing the picture, we include results for the in-
medium properties of the Λ and Σ based on the new Y N
interactions. Specifically, we provide the predictions for the
single-particle potentials UY (pY ) at nuclear matter satura-
tion density (kF = 1.35 fm−1), evaluated self-consistently
within a conventional G-matrix calculation, utilizing the for-
malism described in detail in Refs. [39,52]. As one can see
from Table 5, UΛ(pΛ = 0) for the SMS Y N potentials is
around −30 to −38 MeV, while UΣ(pΣ = 0) is around −3
to +6 MeV.

The predicted value for UΛ(0) is comparable to the result
for NLO19 and also well in line with the usually cited empir-
ical value of UΛ = −27 ∼ −30 MeV [92]. Thus, the con-
clusions drawn in Refs. [93,94] on the properties of neutron
stars and a possible solution of the hyperon puzzle based on
the NLO13 and NLO19 potentials remain unchanged. In that
works it was argued that the combined repulsive effects of
the two-body interaction and a chiral ΛNN three-body force
could be sufficiently strong to prevent the appearance of Λ

hyperons in neutron stars. We want to emphasize that the
somewhat larger result for N2LO (550)a is mainly due to the
P-wave contributions. The alternative fit (550)b considered
in the discussion of the Σ+ p cross section in Sect. 3.1, where
only the P-waves were readjusted, yieldsUΛ = −35.9 MeV.

By contrast, UΣ is definitely less repulsive than what was
found for NLO13 and NLO19 and also below the range of
10–50 MeV advocated in Ref. [92]. A detailed comparison
reveals that the more strongly repulsive UΣ of NLO13 and
NLO19 is primarily due to the 3S1 interaction in the I = 3/2
channel which is more repulsive at large momenta for those
potentials. However, the latter feature is precisely the reason
why for NLO19 the scattering results are in conflict with the
J-PARC data on Σ+ p (cf. Fig. 1), as we have discussed in
Sect. 3.1. Specifically, the artificial rise of the cross section at
large momenta is a direct result of the increasingly negative
values for the 3S1 phase shift (Fig. 3). The same conflicting
situation occurs for NLO13 and our LO interactions. Indeed,
as far as we can see, also phenomenological Y N potentials
that predict a more strongly repulsive UΣ , like those of Fuji-
wara et al. [95] based on the constituent-quark model, over-
estimate the Σ+ p cross section at large momenta, see Fig. 24
in [9].

At the moment, it remains unclear to us whether one can
reconcile the constraints provided by the J-PARC data for
the Σ+ p interaction with the request for a strongly repulsive
UΣ . Clearly, with regard to the Σ single-particle potential,

the situation could be more complicated because of the over-
all spin-isospin structure of the ΣN interaction where some
of the relevant S-waves are attractive and others repulsive so
that there are possible cancellations in the evaluation of UΣ .
That being said, and may be more importantly, one should
keep in mind that the Λ single-particle potential follows from
the rich spectrum of bound Λ hypernuclei and can be consid-
ered as well established. Evidence for the Σ single-particle
potential comes only from the analysis of level shifts and
widths of Σ− atoms and from measurements of inclusive
(π−, K+) spectra related to Σ−-formation in heavy nuclei
[92]. It is worth mentioning that a conflicting situation has
been likewise observed for the Ξ single-particle potential.
Also in that case the results from Brueckner calculations,
using Y N interactions either constrained by available data
[41] or from lattice QCD simulations [96] differ noticeably
from phenomenological results deduced again mainly from
atomic states and inclusive (K−, K+) spectra [92,97].

3.6 Uncertainty estimate

Since the range and the strength of theY N interaction is com-
parable to that in the NN system, considering the approx-
imate validity of SU(3) flavor symmetry, we expect overall
a very similar convergence pattern with increasing order in
the chiral expansion as that found in the NN studies in Refs.
[31,45]. Anyway, to corroborate this expectation, we adopt
here the tools proposed in Ref. [45] for an uncertainty esti-
mate and present some selected results below. For simplicity
reasons, we focus on the elastic channels, namely Λp and
Σ+ p. One can see from the NN results [31] that S- and,
in general, also P-waves are already well described at the
N2LO level, say for laboratory energies up to 150 MeV. The
situation is different for D- and higher partial waves because,
in this case, contact terms appear only at N3LO or even higher
order.

The concrete expression used to calculate an uncertainty
ΔXN2LO(k) to the N2LO prediction XN2LO(k) of a given
observable X (k) is [45]

ΔXN2LO(k) = max

(
Q4 ×

∣∣∣XLO(k)
∣∣∣,

Q2 ×
∣∣∣XLO(k) − XNLO(k)

∣∣∣,
Q ×

∣∣∣XNLO(k) − XN2LO(k)
∣∣∣
)

, (20)

where the expansion parameter Q is defined by

Q = max

(
k

Λb
,
Mπ

Λb

)
, (21)

with k the on-shell center-of-mass momentum correspond-
ing to the considered laboratory energy/momentum, and Λb
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Fig. 10 Uncertainty estimate for the Y N interaction in the Λp channel, employing the method suggested in Ref. [45]. As basis the LO (700), and
the NLO (550) and N2LO (550) results are used. The grey (light) band corresponds to ΔXNLO, the red (dark) band to ΔXN2LO

Fig. 11 Uncertainty estimate for the Y N interaction in the Σ+ p channel, employing the method suggested in Ref. [45]. Same description of the
curves as in Fig. 10

the breakdown scale of the chiral EFT expansion. For the
latter, we take over the value established in Ref. [45], i.e.
Λb ∼ 600 MeV. Analogous definitions are used for calculat-
ing the uncertainty up to NLO. Note that the quantity X (k)
represents not only a “true” observable such as a cross section
or an analyzing power, but also a phase shift.

In Figs. 10 and 11, we show our uncertainty estimates
for the cross sections and the S-wave phase shifts for Λp
and Σ+ p following the procedure proposed in Ref. [45].
Certainly, for addressing the question of convergence thor-
oughly, orders beyond N2LO are needed. Higher orders are
also required to avoid that accidentally close-by results lead
to an underestimation of the uncertainty. For the Y N interac-

tion, any uncertainty estimate is difficult since the data are not
sufficient to unambiguously determine all LECs. For exam-
ple, recall that the strength of the ΛN interaction in the 1S0

partial wave was fixed “by hand” and not based on actual Λp
scattering data. For this reason, there is definitely some bias
in the quantification of the uncertainty of phase shifts in indi-
vidual partial waves. Nonetheless, we want to emphasize that
the estimated uncertainty appears sensible and also plausi-
ble. In particular, it encases the variations due to the regulator
dependence and, thus, is consistent with the expectation that
cutoff variations provide a lower bound for the theoretical
uncertainty [45]. For details of the method and a thorough
discussion of the underlying concept, we refer the reader to
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[98]. We should add that in case of the chiral NN interaction
more sophisticated tools like a Bayesian approach [99] have
been applied, too.

4 Summary and outlook

In the present work, we have established a hyperon–nucleon
potential for the strangeness S = −1 sector (ΛN , ΣN ) up to
next-to-next-to-leading order in the chiral expansion. SU(3)
flavor symmetry is imposed for constructing the interaction,
however, the explicit SU(3) symmetry breaking by the phys-
ical masses of the pseudoscalar mesons (π , K , η) and in the
leading-order contact terms is taken into account. A novel
regularization scheme, the so-called semilocal momentum-
space regularization, has been employed which has been
already successfully applied in studies of the nucleon–
nucleon interaction within chiral effective field theory up to
high orders [31].

An excellent description of the low-energy Λp, Σ− p and
Σ+ p scattering cross sections could be achieved with a χ2 of
15–16 for the commonly considered 36 data points [38]. At
low energies, the results are also very close to those of our ear-
lier Y N interactions NLO13 [38] and NLO19 [39], that are
based on a different regularization scheme. New measure-
ments of angular distributions for the ΣN channels from
J-PARC [7–9] have been analyzed in an attempt to deter-
mine the strength of the contact interactions in the P-waves.
Although those data can be fairly well described, considering
the experimental uncertainties and the fact that the pertinent
momenta plab � 450 MeV are close to the limit of applica-
bility of the N2LO interaction, they are not included in the
total χ2.

Separation energies for the hypertriton have been pre-
sented. These are not “true” predictions of the theory, because
we required the 3

ΛH to be bound as additional constraint to
fix the spin dependence of the ΛN interaction. Anyway, the
obtained values of 120–170 keV are well within the range of
the presently existing experimental evidence [14,15,86,91].
Compared to NLO13 and NLO19, the new interaction seems
to be more attractive. This also shows up in the results for
4
ΛHe which are closer to the experimental values. A simple
uncertainty estimate for the chiral expansion [45], performed
for a selected set of Y N observables, exhibits a similar pat-
tern as has been found for the NN interaction. Certainly, at
the level of N2LO one can not expect to see fully converged
results, in contrast to the NN sector where the calculation
have progressed up to N4LO (and beyond) [31].

As a next step, one should explore the Y N potential in
calculations of light Λ-hypernuclei within, e.g., the no-core
shell model (feasible up to A ≈ 10). Of course, for that chiral
(ΛNN , ΣNN ) three-body forces should be included, which
arise at N2LO in the chiral expansion [43]. Moreover, a pos-

sible charge-symmetry breaking in the Λp and Λn interac-
tions should be introduced. Such a CSB component has been
found to be essential for understanding the level splittings in
the 4

ΛH-4
ΛHe mirror nuclei [89,90]. For example, an earlier

study by us, based on the NLO13 and NLO19 interactions,
suggests that Δas = aΛp

s −aΛn
s ≈ 0.62±0.08 fm for 1S0 and

Δat ≈ −0.10 ± 0.02 fm for 3S1 [89]. Clearly, the reproduc-
tion of the large CSB effect in the 1S0 partial wave requires a
noticeable modification of the present ΛN interaction. In any
case, one has to keep in mind that the actual CSB splittings
for 4

ΛH-4
ΛHe are not yet that well settled experimentally, cf.

Refs. [16,91,100]. Finally, a more elaborate effort to deter-
mine the strength of the contact terms in the P-waves should
be done in the future when Λp angular distributions from the
J-PARC E86 experiment have become available [42].
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Appendix A: Semilocal momentum-space baryon-baryon
potential at NLO and N2LO

In order to implement the local cutoff in the two-meson con-
tributions we follow Ref. [31] and write the corresponding
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Fig. 12 Relevant diagrams at next-to-leading order. Solid and dashed lines denote octet baryons and pseudoscalar mesons, respectively. From left
to right: planar box, crossed box, left triangle, right triangle, football diagram. Note that from the planar box, only the irreducible part contributes
to the potential

potentials in terms of their spectral representation:

V (q) = 2

π

∫ ∞

2MP

μ dμ
ρ(μ)

μ2 + q2 ,

ρ(μ) = ImV (q = 0+ − i μ) (A.1)

with q the momentum transfer q = ∣∣p ′ − p
∣∣ and MP the

mass of the exchanged meson. The regularized potential is
then given by

V (q) = e− q2

2Λ2
2

π

∫ ∞

2MP

μ dμ
ρ(μ)

μ2 + q2 e− μ2

2Λ2 . (A.2)

Appendix A.1: Contributions at NLO

Diagrams representing the contributions at NLO (chiral order
ν = 2) are shown in Fig. 12. At NLO one obtains a central
potential (VC), a spin-spin potential (VS) and a tensor-type
potential (VT ) [38], so that V (2) = V (2)

C + σ 1 · σ 2 V
(2)
S +

σ 1 · q σ 2 · q V (2)
T . We provide here explicit expressions of

the irreducible potentials for two-pion exchange [31,101].
Clearly, those formulae are also valid for ηη and/or KK
(K K̄ ) exchange. General expressions of the spectral func-
tions for non-identical meson masses are given in Appendix
B below.

V (2)
C,S(q) = 2q4

π

∫ ∞

2Mπ

dμ
ρC,S(μ)

μ3 (μ2 + q2)
,

V (2)
T (q) = −2q2

π

∫ ∞

2Mπ

dμ
ρT (μ)

μ (μ2 + q2)
. (A.3)

The contributions (spectral functions) of the individual dia-
grams are:
Planar box (pb)

ρ
pb
C (μ) = − N

3072π f 4
0

√
μ2 − 4M2

π μ

×(−23μ4 + 112μ2M2
π − 128M4

π ), (A.4)

ρ
pb
T (μ) = ρ

pb
S (μ)

μ2 = N
√

μ2 − 4M2
π

256π f 4
0 μ

. (A.5)

Crossed box (xb)

ρxb
C (μ) = −ρ

pb
C (μ),

ρxb
S (μ) = ρ

pb
S (μ),

ρxb
T (μ) = ρ

pb
T (μ). (A.6)

Triangle diagrams (tr)

ρC (μ) = −N
√

μ2 − 4M2
π

3072π f 4
0 μ

(5μ2 − 8M2
π ). (A.7)

Football diagram (fb)

ρC (μ) = −N (μ2 − 4M2
π )3/2

6144π f 4
0 μ

. (A.8)

The quantities N are an appropriate product of coupling
constants and isospin factors:

N pb,xb = fB1Bil M1 fBil B3M2

× fB2Bir M2 fBir B4M1(2 f0)
4 IB1B2→B3B4

Ntr = fB1Bi M1 fBi B3M2(2 f0)
2 IB1B2→B3B4

N f b = IB1B2→B3B4 . (A.9)

The isospin factors are summarized in Table 7 whereas the
coupling constants are specified in Eqs. (4). Bil and Bir
denote the (left and right) baryons in the intermediate state.
Note that the relations (A.6) concern only the μ dependence,
but not the factors N pb and Nxb! In case of the NN system the
expressions for the spectral functions (and the potential) can
be reduced to those given in Ref. [31] by simply representing
the pertinent isospin coefficients in Table 7 in operator form:
−2 τ 1 ·τ 2 +3 for the planar box, 2 τ 1 ·τ 2 +3 for the crossed
box, −4 τ 1 ·τ 2 for the triangle diagrams, and 8 τ 1 ·τ 2 for the
football diagram. Then, since V xb

C = −V pb
C , see Eq. (A.6),

the central component of the spectral function (potential) is
proportional to τ 1 · τ 2 (denoted by ηC and WC , respectively,
in Ref. [31]), while for the spin- and tensor components the
contributions from planar and crossed box add up and the
isospin dependence drops out (ρS,T and VS,T in Ref. [31]).

Appendix A.2: Contributions at N2LO

Diagrams that arise at N2LO (ν = 3) are shown in Fig. 13.
It should be noted, however, that only the triangle diagrams
contribute. There is no contribution from the football dia-
gram because of parity conservation. The potential consists
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Table 7 Isospin factors I for the NLO diagrams. The baryons in the intermediate state of the planar box, crossed box, and the triangle diagrams
are indicated to the left of the factors

Transition Planar Box Crossed Box Triangle Left Triangle Right Football Diagram
(isospin)

NN → NN

(I = 0) NN 9 NN −3 N 12 N 12 −24

(I = 1) NN 1 NN 5 N −4 N −4 8

ΣN → ΣN

(I = 1/2) ΣN 4 ΣN 0 N 16 Σ 4 −32

ΛN 3 ΛN −1 Λ 4

(I = 3/2) ΣN 1 ΣN 3 N −8 Σ −2 16

ΛN 0 ΛN 2 Λ −2

ΛN → ΣN

(I = 1/2) ΣN 2
√

3 ΣN −2
√

3 N 0 Σ 4
√

3 0

ΛN → ΛN

(I = 1/2) ΣN 3 ΣN 3 N 0 Σ 0 0

Fig. 13 Relevant diagrams at next-to-next-to-leading order. Solid and
dashed lines denote octet baryons and pseudoscalar mesons, respec-
tively. Triangle (left) and football (right) diagram

again of central, spin-spin, and tensor components, V (3)
C,S,T ,

and those components can be evaluated from representations
analogous to Eq. (A.3). The spectral functions in question
are given by [101]

ρC (μ) = N1

512μ f 4
0

(μ2 − 2M2
π ) + N2

256μ f 4
0

(μ2 − 2M2
π )2,

(A.10)

ρT (μ) = ρS(μ)

μ2 = − N3

512μ f 4
0

(μ2 − 4M2
π ). (A.11)

The coefficients Ni (i = 1, 2, 3) are combinations of the
coupling constants at the involved BBM vertices and of ele-
ments of the sub-leading (O(q2)) meson-baryon Lagrangian
[102,103], in particular of the meson-baryon LECs bD ,
bF , b0, b1-b4, and d1-d3, see Sect. IV in Ref. [43] for details
and/or Sect. 4.3 in [46]. The concrete relations are as follows:
for NN

N1 = 96 c1 g
2
A M2

π ,

N2 = 12 c3 g
2
A,

N3 = −4 c4 g
2
A τ 1 · τ 2, (A.12)

with c1 = (2b0 + bD + bF )/2, c3 = b1 + b2 + b3 + 2b4,
c4 = 4(d1 + d2) [104], where the ci are the conventional
LECs used in the nucleonic sector.

for ΣN

N1 =
[
48 cΣ

1 g2
A + 32 c1 (2αgA)2

+16 c1
4

3
((1 − α)gA)2

]
M2

π ,

N2 = 4cΣ
3 g2

A + 4c3 (2αgA)2 + 2c3
4

3
((1 − α)gA)2,

N3 = −
(

4dΣ g2
A + c4 (2αgA)2 + c4

4

3
((1 − α)gA)2

)

T1 · τ 2, (A.13)

with cΣ
1 = b0+bD , cΣ

3 = 4b1+2b2+3b4, anddΣ = 4d2+d3

and 〈T1 · τ 2〉 = −2, 1 for isospin I = 1/2, 3/2.
for ΛN

N1 =
[

16 cΛ
1 g2

A + 48 c1
4

3
((1 − α)gA)2

]
M2

π ,

N2 = 4 cΛ
3 g2

A + 6 c3
4

3
((1 − α)gA)2,

N3 = 0, (A.14)

with cΛ
1 = 3b0 + bD , cΛ

3 = 2b2 + 3b4.
for ΛN → ΣN

N1 = 0,

N2 = 0,

N3 = 16d1 g2
A + 2

√
3 c4

4√
3
α(1 − α)g2

A. (A.15)

Note that in Eqs. (A.13–A.15) we have re-expressed the
ΣΣπ and ΣΛπ coupling constants in terms of the SU(3)
relations given in Eq. (4), i.e. fΣΣπ = 2α fN Nπ and fΣΛπ =
(2/

√
3)(1 − α) fN Nπ with fN Nπ = gA/(2 fπ ).

In our calculation we take the πN LECs, i.e. c1-c4, from
Refs. [105,106], obtained from matching the chiral expan-
sion of the pion-nucleon scattering amplitude to the solution
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of the Roy-Steiner equations. Specifically we use the values
employed in the SMS NN potential up to N2LO. Fixing the
values for the other LECs, without direct experimental evi-
dence which can be used as constraint, is, however, difficult,
and to some extent arbitrary. Here we try to find the best possi-
ble set instead of insisting on an intrinsically consistent selec-
tion. Since theoretical studies of the baryon masses yield, in
general, b1,...,b4 values that imply a c3 very far away from the
results obtained from πN scattering we consider the values
from decuplet saturation as the most realistic choice. Accord-
ingly, we take the values for the b’s and d’s (i.e. b1-b4, d1-d3)
for the πΣ and πΛ vertices from Ref. [107]. Since bD , bF , b0

are zero in this case, we use here values from Ref. [108], fixed
in a study of the baryon mass splittings and the πN sigma
term. Anyway exploratory calculations indicated that theY N
results are fairly insensitive to the specific values adopted for
the LECs bD , bF , b0. The actual values used are (all in units of
GeV−1): c1 = −0.74, c3 = −3.61, c4 = −2.44 [105,106],
bD = 0.066, bF = −2.13, b0 = −0.517 [108], b1 = 0.59,
b2 = 0.76, b3 = −1.01, b4 = −1.51, d1 = 0.25, d2 = 0.08,
d3 = −0.50 [107].

Appendix A.3: Subtractions in the spectral integrals

As in case of the LO term and following the procedure in the
NN interaction [31] we perform subtractions according to
Eqs. (42) and (44) of that reference in the spectral integrals
for the NLO and N2LO potentials so that the final form of
those contributions read

V (2,3)
C (q) = e− q2

2Λ2
2

π

∫ ∞

2Mπ

dμ

μ3 ρ
(2,3)
C (μ)

×
(

q4

μ2 + q2 + C2
C,1(μ) + C2

C,2(μ) q2
)
e− μ2

2Λ2 ,

V (2,3)
S (q) = e− q2

2Λ2
2

π

∫ ∞

2Mπ

dμ

μ3 ρ
(2,3)
S (μ)

×
(

q4

q2 + μ2 + C2
S,1(μ) + C2

S,2(μ) q2
)
e− μ2

2Λ2 ,

V (2,3)
T (q) = −e− q2

2Λ2
2

π

∫ ∞

2Mπ

dμ

μ3 ρ
(2,3)
S (μ)

×
(

q2

μ2 + q2 + C1
T (μ)

)
e− μ2

2Λ2 , (A.16)

The functions C2
i (μ) and C1

T (μ) appearing in the (single-
and double-)subtracted spectral integrals have the form [31]:

C2
C,1(μ) =

[
2Λμ2

(
2Λ4 − 4Λ2μ2 − μ4

)

+√
2πμ5e

μ2

2Λ2
(

5Λ2 + μ2
)

erfc

(
μ√
2Λ

) ]

/(4Λ5),

C2
C,2(μ) = −

[
2Λ

(
6Λ6 − 2Λ2μ4 − μ6

)

+√
2πμ5e

μ2

2Λ2
(

3Λ2 + μ2
)

erfc

(
μ√
2Λ

) ]

/(12Λ7),

C2
S,1(μ) =

[
2Λμ2

(
2Λ4 − 4Λ2μ2 − μ4

)

+√
2πμ5e

μ2

2Λ2
(

5Λ2 + μ2
)

erfc

(
μ√
2Λ

) ]

/(6Λ5),

C2
S,2(μ) = −

[
2Λ

(
15Λ6 − Λ4μ2 − 3Λ2μ4 − 2μ6

)

+√
2πμ5e

μ2

2Λ2
(

5Λ2 + 2μ2
)

erfc

(
μ√
2Λ

) ]

/(30Λ7),

C1
T (μ) = −

[
2Λ

(
15Λ6 − 3Λ4μ2 + Λ2μ4 − μ6

)

+√
2πμ7e

μ2

2Λ2 erfc

(
μ√
2Λ

) ]

/(30Λ7). (A.17)

Appendix B: Spectral functions for unequal meson masses

For completeness we provide here expressions for the spec-
tral functions when the masses of the mesons are differ-
ent. Those can be used to evaluate the contributions from
exchanges of πK , ηK , etc., which arise formally in SU(3)
chiral EFT at NLO and N2LO. However, as already empha-
sized in the main text, given the present choice of the cutoff
in the local regulator of Λ = 500–600 MeV, those contribu-
tions are strongly suppressed and, therefore, omitted in the
present study. Denoting the meson masses by M1 and M2 the
spectral functions are as follows:
for NLO

ρ
pb
C (μ) =

− N

3072π f 4
0√[

μ2 − (M1 + M2)2
] [

μ2 − (M1 − M2)2
]

×
[

− 23μ4 + (M2
1 − M2

2 )4

μ4 + 56μ2(M2
1 + M2

2 )

+8
(M2

1 + M2
2 )(M2

1 − M2
2 )2

μ2

−2(21M4
1 + 22M2

1 M
2
2 + 21M4

2 )

]
(A.18)

ρ
pb
T (μ) = ρ

pb
S (μ)

μ2

=
N

√[
μ2 − (M1 + M2)2

] [
μ2 − (M1 − M2)2

]
256πμ2 f 4

0

(A.19)
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For crossed-box diagrams the relations given in Eq. (A.6)
apply.

ρtr
C (μ) = −

N
√[

μ2 − (M1 + M2)2
] [

μ2 − (M1 − M2)2
]

3072πμ4 f 4
0

×
[
5μ4 − 4μ2(M2

1 + M2
2 ) − (M2

1 − M2
2 )2

]
(A.20)

ρ
f b
C (μ) = N

[
μ2 − (M1 + M2)

2
] 3

2
[
μ2 − (M1 − M2)

2
] 3

2

6144πμ4 f 4
0

(A.21)

for N2LO

ρtr
C (μ) = N1

512μ f 4
0

(μ2 − M2
1 − M2

2 )

+ N2

256μ f 4
0

(μ2 − M2
1 − M2

2 )2 (A.22)

ρtr
T (μ) = ρtr

S (μ)

μ2

= − N3

512μ3 f 4
0

[
μ2 − (M1 + M2)

2
]

×
[
μ2 − (M1 − M2)

2
]

(A.23)

Appendix C: Tables with LECs

TheY N LECs employed in the present study are summarized
in Tables 8 and 9. With those LECs the contribution of the
contact terms to the potentials in the various Y N channels
can be calculated, based on Eqs. (8) to (17). With regard to the
P-waves SU(3) symmetry is preserved so that the potentials
follow from the appropriate SU(3) combination as specified
in Table 2. In case of the 1S0 and 3S1-3D1 partial waves,
leading-order SU(3) breaking terms have been considered in
the fitting procedure, in line with the power counting [50].
Here, we list the LECs in the isospin basis for the ΛN and
ΣN channels and the ΛN ↔ ΣN transition (Table 8).
Since for the 3S1-3D1 partial wave SU(3) symmetry implies
that VΛN→ΛN = VΣN→ΣN (I=1/2) = (C8a + C10∗

)/2, cf.
Table 2, one can directly read off the amount of symmetry

Table 8 The Y N contact terms for the 1S0 and 3S1–3D1 partial waves for various cutoffs. The values of the C̃’s are in 104 GeV−2 the ones of the
C’s in 104 GeV−4; the values of Λ in MeV

SMS NLO SMS N2LO

Λ 500 550 600 500 550 600

ΛN → ΛN C̃1S0
−0.02935 −0.00329 0.14237 0.00494 0.07219 0.08299

C1S0
0.63280 0.61297 0.79287 0.26538 0.37189 0.09995

ΛN → ΣN C̃1S0
−0.03286 −0.03023 −0.11525 −0.02415 −0.06843 −0.07698

C1S0
−0.29427 −0.26766 −0.33429 −0.11513 −0.17396 −0.02095

ΣN → ΣN (1/2) C̃1S0
0.11221 0.12683 0.14184 0.09486 0.17822 0.29980

C1S0
−0.15191 −0.10078 −0.09857 −0.04162 −0.09201 0.04409

ΣN → ΣN (3/2) C̃1S0
−0.01620 0.02679 0.17627 0.00309 0.06730 0.07276

C1S0
0.73089 0.70219 0.90430 0.30375 0.42988 0.10693

ΛN → ΛN C̃3S1
0.09667 0.10212 0.14003 0.16132 0.18609 0.21782

C3S1
0.72758 0.56012 0.54597 0.39114 0.34187 0.16242

ΛN → ΣN C̃3S1
0.15685 0.18472 0.19931 0.17541 0.16851 0.18866

C3S1
0.72892 0.27346 −0.05722 0.58414 0.49310 0.15400

ΣN → ΣN (1/2) C̃3S1
0.09667 0.10212 0.14003 0.18681 0.18877 0.21267

C3S1
0.72758 0.56012 0.54597 0.39114 0.34187 0.16242

ΣN → ΣN (3/2) C̃3S1
0.05032 0.06086 0.06355 0.15319 0.11209 0.13002

C3S1
0.08219 0.08044 0.03758 0.40259 −0.06077 −0.10236

ΛN → ΛN C3SD1
0.08863 0.09803 0.08863 0.34868 0.13053 0.12134

ΛN → ΣN C3SD1
0.31634 0.32118 0.31634 0.52449 0.32367 0.34512

ΣN → ΣN (1/2) C3SD1
0.08863 0.09803 0.08863 0.34868 0.13053 0.12134

ΣN → ΣN (3/2) C3SD1
0.20000 0.24793 0.24793 0.21463 0.21463 0.18000
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Table 9 The Y N contact terms for the P-waves for various cutoffs. The values of the LECs are in 104 GeV−4; the values of Λ in MeV. The
superscripts a and b denote the two variants introduced in Sect. 3.1

Λ SMS NLO SMS N2LO

500 550 600 500 550a 550b 600

C27
3P0

0.17477 0.22196 0.26500 0.44332 0.45000 0.62505 0.61226

C8s
3P0

1.65980 2.75900 2.06930 2.39600 0.82218 1.60990 2.42460

C10∗
1P1

2.41220 1.62550 0.82692 2.41640 1.55430 1.73930 3.14090

C10
1P1

0.00000 0.00000 0.00000 0.32168 0.20699 −0.09449 0.03500

C8a
1P1

0.06119 −0.10810 −0.14370 0.14853 0.19339 0.20985 0.32815

C27
3P1

0.22993 0.19541 0.18500 0.32000 0.48651 0.65850 0.58177

C8s
3P1

0.39891 0.07447 0.10685 0.49239 0.51190 0.52342 0.79248

C27
3P2

−0.29185 −0.25446 −0.22000 −0.08937 −0.10000 −0.01692 −0.01802

C8s
3P2

1.06570 −0.06844 −0.20845 2.96720 3.30420 3.32790 2.96270

breaking in the contribution of the contact potential from the
values in Table 8. In general, it is small or even zero.
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