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Abstract A hyperon-nucleon potential for the strange-
ness S = −1 sector (ΛN , ΣN) up to third order in the
chiral expansion is presented. SU(3) flavor symmetry
is imposed for constructing the interaction, however,
the explicit SU(3) symmetry breaking by the physical
masses of the pseudoscalar mesons and in the leading-
order contact terms is taken into account. A novel reg-
ularization scheme is employed which has already been
successfully used in studies of the nucleon-nucleon in-
teraction within chiral effective field theory up to high
orders. An excellent description of the low-energy Λp,
Σ−p and Σ+p scattering data is achieved. New data
from J-PARC on angular distributions for the ΣN chan-
nels are analyzed. Results for the hypertriton and A = 4

hyper-nuclear separation energies are presented. An un-
certainty estimate for the chiral expansion is performed
for selected hyperon-nucleon observables.

Keywords Hyperon-Nucleon interactions · Forces in
hadronic systems and effective interactions
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1 Introduction

The hyperon-nucleon (ΛN , ΣN) interaction has been
under scrutiny in various fields in recent times. Cer-
tainly most prominent has been the discussion of its
properties in an astrophysical context. The discovery
of neutron stars with masses around or in excess of
twice the solar mass opened speculations about the role
hyperons and specifically the Λ play in understanding
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their characteristics. In particular, at densities realized
in such compact objects, neutrons should be eventu-
ally converted to Λ’s, resulting in a softening of the
equation-of-state (EoS) and a collapse of the conven-
tional theoretical explanation of the observed mass ra-
dius relation. This is the so-called hyperon puzzle, cf.
the reviews [1–5] and references therein. On a less spec-
tacular (speculative) level, new measurements of ΛN

and ΣN scattering have been reported [6–9], including
the first more extensive data on Σ+p and Σ−p differen-
tial cross sections away from the threshold. In addition,
two-particle momentum correlation functions involv-
ing strange baryons have been determined, in heavy-
ion collision and in high-energy pp collisions, which al-
low access to the Y N interaction at very low momenta
[10–13]. Finally, there are ongoing efforts for a better
determination of the binding energies of light Λ hyper-
nuclei [14–16]. On the theory side, lattice QCD simu-
lations have matured to a stage where an evaluation
of the Y N interaction for quark (pion) masses close to
the physical point can be performed [17, 18]. Further,
ab initio methods like the no-core shell model (NCSM)
have been pushed to a level where calculations of hy-
pernuclei up to A = 10 and beyond can be performed,
incorporating the full complexity of the underlying el-
ementary Y N interaction [19–25].

Chiral effective field theory (EFT) for nuclear sys-
tems, formulated by Weinberg about 30 years ago [26,
27], constitutes a rather powerful tool for studying the
interaction between baryons. In this approach a poten-
tial is established via an expansion in terms of small
momenta and the pion mass, subject to an appropriate
power counting, so that the results can be improved sys-
tematically by going to higher orders, while at the same
time theoretical uncertainties can be estimated [28,29].
Furthermore, two- and three-baryon forces can be con-
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structed in a consistent way. The resulting interaction
potentials can be readily employed in standard two-
and few-body calculations. They consist of contribu-
tions from an increasing number of pseudoscalar-meson
exchanges, determined by the underlying chiral symme-
try, and of contact terms which encode the unresolved
short-distance dynamics and whose strengths are pa-
rameterized by a priori unknown low-energy constants
(LECs). Of course, there are further LECs related to
higher order two-meson exchanges which can in princi-
ple be fixed from meson-baryon scattering data.

While the description of the nucleon-nucleon (NN)
interaction within chiral EFT has already progressed up
to the fifth order and beyond [30–32], corresponding ap-
plications of that framework to the Y N interaction are
lagging far behind [33–37]. Here, NLO is presently the
state-of-the-art [38–41]. That status is primarily a con-
sequence of the unsatisfactory situation with regard to
the data base, practically only cross sections are avail-
able and primarily for energies near the thresholds. In
particular, differential observables that would allow to
fix the LECs in P - and/or higher partial waves, which
emerge in the chiral expansion when going to higher or-
ders, are rather scarce and of low statistics. Only within
the last few years the overall circumstances became
more promising, thanks to the E40 experiment per-
formed at the J-PARC facility. The measurements have
already produced differential cross sections for the Σ+p

and Σ−p channels for laboratory momenta from 440 to
850 MeV/c [7–9] and corresponding studies for Λp, in-
cluding possibly even spin-dependent observables, are
in the stage of preparation [42].

In this paper, we present a Y N potential up to next-
to-next-to-leading order (N2LO), derived within SU(3)
chiral EFT. The mentioned experimental development
was one of the motivations to extend our study of the
ΛN -ΣN interaction to the next order. However, there
are also several theoretical aspects which make an ex-
tension to N2LO rather interesting. One of them is that
in the Weinberg counting three-baryon forces (3BFs)
emerge at this order. Calculations of the four-body sys-
tems 4

ΛH and 4
ΛHe for the NLO13 [38] and NLO19 [39]

potentials based on Faddeev-Yakubovsky equations in-
dicate that the experimental separation energies are
underestimated and dependent on the version of the
YN interaction [39]. Very likely this signals the need
for including ΛNN and possibly also ΣNN 3BFs [43].
Another appealing factor is (in view of the mentioned
scarcity of data) that no additional LECs appear at this
order. At the same time, results for NN scattering in-
dicate that there is some improvement in the energy de-
pendence of the S-waves and, specifically, in several P -

waves once the contributions involving the sub-leading
πN vertices that enter at N2LO are taken into account.

A further issue is the dependence on the regulator
that has to be introduced to remove high-momentum
components when solving the scattering equations [44].
In general, a substantial reduction of the residual reg-
ulator dependence can be achieved by going to high
orders with a larger number of LECs, which then al-
low one to absorb those effects efficiently [45]. Since
our calculation is only up to N2LO, we want to keep
regulator artifacts as small as possible from the be-
ginning. With regard to that, a novel regularization
scheme proposed and applied in Ref. [31] seems to be
rather promising. Here, a local regulator is applied to
the pion-exchange contributions and only the contact
terms, being non-local by themselves, are regularized
with a non-local function. Accordingly, the resulting
interactions are called “semilocal momentum-space reg-
ularized (SMS) chiral NN potentials” [31]. In earlier
works on the NN interaction but also in our Y N stud-
ies, a non-local cutoff has been applied to the whole po-
tential [38, 39, 44]. A local regulator for pion-exchange
contributions leads to a reduction of the distortion in
the long-range part of the interaction and, thereby, fa-
cilitates a more rapid convergence already at low chiral
orders. Of course, this effect cannot be directly quan-
tified in case of ΛN and ΣN because of the lack of
more detailed empirical information, specifically due to
the absence of a proper partial-wave analysis. Nonethe-
less, given that we aim at comparing our results with
the new J-PARC data at laboratory momenta around
500 MeV/c, a reduction of regulator artifacts is defi-
nitely desirable.

The paper is structured in the following way: In
Sect. 2, we summarize the basics of the employed for-
malism. More details are described in an appendix. Our
results are presented in Sect. 3 where we discuss in de-
tail the scattering cross sections for the channels Λp,
Σ+p and Σ−p. Predictions for S- and P -wave phase
shifts in the ΛN and ΣN (isospin I = 3/2) channels
are also provided. Furthermore, results for the hyper-
triton and A = 4 hyper-nuclear separation energies and
for the in-medium properties of the Λ and Σ hyperons
are given. Finally, an uncertainty estimate of our EFT
calculations is presented. The paper closes with a brief
summary and an outlook.

2 Formalism

In this section and in Appendix A, we provide a self-
contained description of all the ingredients of the new
Y N interaction and its extension to N2LO. However,
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we refrain from repeating here the details of the deriva-
tion of the baryon-baryon interaction within SU(3) chi-
ral EFT. This has been described and thoroughly dis-
cussed in Refs. [34, 38] and in the review [46]. We re-
fer the interested reader to those works. Also, with re-
gard to various aspects of the new regularization scheme
that forms the basis of the SMS potentials, we refer to
Ref. [31] for details where this procedure was introduced
and worked out.

2.1 One-boson exchange

Let us start with the one-boson-exchange (OBE) con-
tribution and with introducing the new regularization
scheme. The formulae for the contributions from two-
boson exchanges which arise at NLO and N2LO are
given in Appendix A. The regularized potential for single-
meson exchange VP (P = π, K, η) has the following
form in momentum space:

V OBE
B1B2→B3B4

(q ) = −fB1B3P fB2B4P

(
σ1 · qσ2 · q
q2 +M2

P

+ C(MP )σ1 · σ2

)
exp

(
−q2 +M2

P

Λ2

)
IB1B2→B3B4

, (1)

where the fBiBjP are baryon-baryon-meson coupling
constants, MP is the mass of the exchanged pseudoscalar
meson, and IB1B2→B3B4

is the pertinent isospin factor.
The transferred momentum q is defined in terms of the
final and initial center-of-mass (c.m.) momenta of the
baryons, p′ and p, as q = p′−p. We adopt here the con-
vention of Ref. [31] to include a leading-order contact
term in the one-boson exchange potential. It is chosen
in such a way that the (total) spin-spin part of the po-
tential vanishes for r → 0 in the configuration-space
representation. The expression of C(MP ) which fulfills
that requirement can be given in analytical form and
amounts to [31]

C(MP ) = −
[
Λ
(
Λ2 − 2M2

P

)
+2

√
πM3

P exp

(
M2

P

Λ2

)
erfc

(
MP

Λ

)]
/(3Λ3) .

(2)

Here, erfc(x) is the complementary error function

erfc(x) = 2√
π

∫ ∞

x

dt e−t2 . (3)

Under the assumption of strict SU(3) flavor symme-
try, the various coupling constants fBiBjP are related
to each other by [47]

fNNπ = f, fNNη8
= 1√

3
(4α− 1)f,

fΛNK = − 1√
3
(1 + 2α)f, fΞΞπ = −(1− 2α)f,

fΞΞη8 = − 1√
3
(1 + 2α)f, fΞΛK = 1√

3
(4α− 1)f,

fΛΣπ = 2√
3
(1− α)f, fΣΣη8 = 2√

3
(1− α)f,

fΣNK = (1− 2α)f, fΣΣπ = 2αf,

fΛΛη8 = − 2√
3
(1− α)f, fΞΣK = −f.

(4)

Accordingly, all coupling constants are given in terms
of f ≡ gA/2f0 and the ratio α = F/(F + D). Here,
f0 is the Goldstone boson decay constant, gA is the
axial-vector strength measured in neutron β-decay, and
F +D = gA. Note that we will take the physical values
of these various parameters, though strictly speaking in
the effective Lagrangian they appear with their values
in the chiral limit. This difference can be absorbed in
higher order terms. In the present calculation, devia-
tions of the meson-baryon coupling constants from the
SU(3) values are taken into account. Specifically, there
is an explicit SU(3) symmetry breaking in the empirical
values of the decay constants [48],

fπ = 92.4 MeV,

fK = (1.19± 0.01)fπ,

fη = (1.30± 0.05)fπ . (5)

The somewhat smaller SU(3) breaking in the axial-
vector coupling constants, see the pertinent discussion
in Appendix B of Ref. [38], is neglected in the present
study. However, following the practice in chiral NN

potentials, we use gA = 1.29, which is slightly larger
than the experimental value, in order to account for
the Goldberger-Treiman discrepancy. As before in [38],
for the F/(F + D) ratio, we adopt α = 0.4 which is
the SU(6) value. Further, the η meson is identified with
the octet-state η8. The isospin factors IB1B2→B3B4

are
summarized in Table 1.

In the NN case, where only pion exchanges are
taken into account, cutoff values in the range Λ =

350 − 550 MeV were considered where Λ = 450 MeV
yields the best results [31]. The choice of the cutoff
mass for the Y N interaction is more delicate. On the
one hand, we want to preserve the principal features
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Channel Isospin π K η

S = 0 NN → NN 0 −3 0 1

1 1 0 1

S = −1 ΛN → ΛN 1
2

0 1 1

ΛN → ΣN 1
2

−
√
3 −

√
3 0

ΣN → ΣN 1
2

−2 −1 1
3
2

1 2 1

Table 1: Isospin factors I for the various one–pseudoscalar-meson exchanges.

of the underlying approximate SU(3) flavor symmetry,
in particular the explicit SU(3) breaking in the long-
range part of the potential due to the mass splitting
between the pseudoscalar mesons π, K, and η. Since
the kaon mass is around 495 MeV it seems appropri-
ate to use cutoff masses that are at least 500 MeV, so
that the essential role of the K meson for the Y N dy-
namics can be incorporated. At the other end, large
values, say 650 MeV or beyond, lead to highly non-
perturbative potentials and bear the risk of the ap-
pearance of spurious bound states, according to the
experience from NN studies [49]. Considering that as-
pect implicates that two-meson exchange contributions
involving a K and/or η (πK, KK, etc.), where then
the combined masses exceed the cutoff value, will be
strongly suppressed. Therefore, there is no point to in-
clude them explicitly. Rather their effect should be sub-
sumed into the contact terms. Thus, contrary to our
earlier work [38, 39], we expect and allow for SU(3)
symmetry breaking of the LECs in the ΛN and ΣN

systems. In this context, it should be mentioned that
also the counterterms in Eq. (1) constitute effectively
an SU(3) symmetry breaking contact interaction.

In the present work we consider the cutoff values
Λ = 500, 550, and 600 MeV. Clearly, for the lowest
value η exchange will be already strongly suppressed
and, in fact, we neglected its contribution in this case.
The highest value is well above the masses of the K-
and η mesons so that the effect of the SU(3) symmetry
breaking in the masses of the pseudoscalar mesons on
the Y N interaction is well accounted for. In the discus-
sion below we focus predominantly on the results for
Λ = 550 MeV. However, some results, notably the χ2,
the effective range parameters and the hypertriton and
A = 4 separation energies will be given for all three
cutoffs in order to provide an overview of the quality
of our chiral Y N interactions. Anticipating the results,
we stress that an equally good description of the consid-
ered Y N , Y NN and A = 4 hyper-nuclear observables
can be achieved for all three cutoffs.

At leading order (LO), only a very basic descrip-
tion of the Y N interaction can be obtained [34]. In

particular, unrealistic small scattering lengths emerge
from fits to the low-energy data under the prerequi-
site that the lightest Λ hypernuclei are not too strongly
bound. Nonetheless, we construct also a LO interac-
tion in the present study because we want to perform
an uncertainty estimate of our chiral Y N potentials fol-
lowing the procedure proposed in Ref. [45]. It turns out
that under the assumption of SU(3) symmetry (note
that SU(3) breaking contact terms arise first at NLO
[50]) a LO fit with a decent χ2 is only possible for a
cutoff of Λ = 700 MeV and without subtraction. For
smaller cutoffs, the χ2 increases dramatically. We use
that potential for the uncertainty estimate below but do
not discuss its result in detail. Anyway, the LO results
(χ2 ≈ 30, aΛN

s = −2.1 fm, aΛN
t = −1.2 fm) are very

similar to those based on a non-local cutoff reported in
Ref. [34].

2.2 Contact terms

The spin dependence of the potentials due to the LO
contact terms is given by [26]

V
(0)
BB→BB = CS + CT σ1 · σ2 , (6)

where the parameters CS and CT are low-energy con-
stants (LECs) depending on the considered baryon-bary-
on channel. These need to be determined by a fit to
data. At NLO the spin- and momentum-dependence of
the contact terms reads

V
(2)
BB→BB = C1q

2 + C2k
2 + (C3q

2 + C4k
2)σ1 · σ2

+
i

2
C5(σ1 + σ2) · (q× k) + C6(q · σ1)(q · σ2)

+C7(k · σ1)(k · σ2) +
i

2
C8(σ1 − σ2) · (q× k) ,

(7)

where the Ci (i = 1, . . . , 8) are additional LECs and k

is the average momentum defined by k = (p′ + p)/2.
When performing a partial-wave projection, these terms
contribute to the two S–wave (1S0, 3S1) potentials, the
four P–wave (1P1, 3P0, 3P1, 3P2) potentials, and the



5

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1-3D1, 1P1 ξ = 1P1-3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

ξ + C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

)
−1√
20

C8s8a
ξ

ΛN → ΣN 1
2

3
10

(
−C27

ξ + C8s
ξ

)
1
2

(
−C8a

ξ + C10∗
ξ

)
−3√
20

C8s8a
ξ

ΣN → ΛN 1√
20

C8s8a
ξ

ΣN → ΣN 1
2

1
10

(
C27

ξ + 9C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

)
3√
20

C8s8a
ξ

ΣN → ΣN 3
2

C27
ξ C10

ξ –

Table 2: SU(3) relations for the interactions in different B1B2 → B3B4 channels, with isospin I and strangeness
S. C27

ξ etc. refers to the corresponding irreducible SU(3) representation for a particular partial wave ξ [34, 38].

3S1-3D1 and 1P1-3P1 transition potentials in the fol-
lowing way [44] (note that due to the absence of the
Pauli principle, there is one more term than in the NN

case):

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2) , (8)
V (3S1) = C̃3S1

+ C3S1
(p2 + p′2) , (9)

V (3D1 − 3S1) = C3SD1
p′

2
, (10)

V (3S1 − 3D1) = C3SD1
p2 , (11)

V (3P0) = C3P0
p p′ , (12)

V (1P1) = C1P1
p p′ , (13)

V (3P1) = C3P1
p p′ , (14)

V (3P1 − 1P1) = C3P1−1P1
p p′ , (15)

V (1P1 − 3P1) = C1P1−3P1
p p′ , (16)

V (3P2) = C3P2
p p′ , (17)

with p = |p | and p′ = |p ′|. C̃α and Cα are appropriate
combinations of the Ci’s appearing in Eqs. (6) and (7),
see Ref. [38].

Assuming only isospin symmetry, the LECs for each
spin-isospin state of the BB → BB potentials are in-
dependent. When imposing SU(3) flavor symmetry one
obtains relations between the LECs in the strangeness
S = 0 and S = −1 systems, see Table 2, so that the
total number of independent terms is noticeably re-
duced [38]. Specifically, for the partial waves relevant
at low energies, 1S0 and 3S1, within SU(3) symmetry
there are only 10 independent LECs (5 at LO and 5 at

NLO) altogether, whereas with isospin symmetry alone
there would be 16. Like in our previous studies [38,39],
we impose SU(3) constraints on the LECs. However,
for the reasons discussed above, those constraints are
relaxed in the course of the fitting procedure when-
ever required for improving the description of the Λp

and ΣN low-energy data. In practice, a departure from
SU(3) symmetry is only necessary for the LO S-wave
LECs, which is anyway in line with the employed power
counting, see Refs. [38] (Appendix B) and [50].

Note that we do not consider the possible 1P1-3P1

transition at the present stage. In principle, one could
fix the pertinent LECs which correspond to an antisym-
metric ΛN -ΣN spin-orbit force, c.f. the term involv-
ing C8 in Eq. (7), by considering the Scheerbaum fac-
tor [51] in nuclear matter as done by us in Refs. [52,53].
However, we intend to extend our calculations of Λ-
hypernuclei within the NCSM approach [22, 25] up to
A = 9 systems in the future. Then we can directly
use the empirical information on the level splitting of
the 9

ΛBe hypernucleus [54] to investigate the strength
needed for the elementary antisymmetric spin-orbit force.

2.3 Scattering equation

Once the Y N potential is established, a partial-wave
projection is performed [34] and the (ΛN or ΣN) re-
action amplitudes are obtained from the solution of a
coupled-channel Lippmann-Schwinger (LS) equation,

T ℓ′′ℓ′,J
ν′′ν′ (p′′, p′;

√
s) = V ℓ′′ℓ′,J

ν′′ν′ (p′′, p′)

+
∑
ℓ,ν

∫ ∞

0

dpp2

(2π)3
V ℓ′′ℓ,J
ν′′ν (p′′, p)

2µν

k2ν − p2 + iη
T ℓℓ′,J
νν′,J(p, p

′;
√
s) . (18)
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data SMS NLO SMS N2LO NLO13 NLO19

Λ (MeV) 500 550 600 500 550 600 600 600

Λp → Λp Sechi-Zorn [55] 1.8 1.6 1.5 1.9 1.9 1.8 1.4 1.9

Alexander [56] 2.2 2.5 2.7 2.0 2.1 2.2 3.0 1.6

Σ−p → Λn Engelmann [57] 3.6 3.8 4.0 3.6 4.0 3.6 4.1 4.0

Σ−p → Σ0n Engelmann [57] 5.9 5.8 5.8 5.9 5.9 5.9 5.8 6.0

Σ−p → Σ−p Eisele [58] 1.9 1.8 1.8 2.0 1.9 1.9 1.9 2.2

Σ+p → Σ+p Eisele [58] 0.1 0.3 0.4 0.2 0.2 0.3 0.5 0.4

rR [59,60] 0.1 0.0 0.0 0.3 0.1 0.1 0.1 0.1

total χ2 15.52 15.67 16.15 15.78 15.56 15.74 16.82 16.29

Table 3: Comparison between the 36 Y N data and the theoretical results for the various cutoffs in terms of the
achieved χ2. The last two columns are results for the NLO13 [38] and NLO19 [39] Y N potentials.

The label ν indicates the channels and the label ℓ the
partial wave. µν is the pertinent reduced mass. The
on-shell momentum in the intermediate state, kν , is
defined by

√
s =

√
m2

B1,ν
+ k2ν +

√
m2

B2,ν
+ k2ν . Rela-

tivistic kinematics is used for relating the laboratory
momentum plab of the hyperons to the c.m. momen-
tum. For evaluating phase shifts, the LS equation is
solved in the isospin basis. For observables, all calcu-
lations are performed in the particle basis, so that the
correct physical thresholds can be incorporated. The
Coulomb interaction (in the Σ−p and Σ+p channels)
is taken into account appropriately via the Vincent-
Phatak method [61].

3 Results

In fitting to the Y N data we proceed as before [38,39],
i.e. we consider the set of 36 data for Λp, Σ−p and
Σ+p scattering at low energies [55–60] for determin-
ing the LECs in the S-waves. And, like before, as ad-
ditional constraint, we require the hypertriton to be
bound, which enables us to fix the relative strength of
the singlet- and triplet S-waves in the Λp channel, see
Sect. 3.4 for more details. SU(3) symmetry is imposed
for the contact terms at the initial stage but eventually
relaxed for the LO LECs, C̃1S0

and C̃3S1
in Eqs. (8,11),

in line with the power counting where SU(3) break-
ing terms arise from mass insertions in the chiral La-
grangian at the NLO level [50]. Anyway, as said, we
do expect some SU(3) breaking in the contacts terms
in view of the fact that two-meson exchange contribu-
tions from πK, πη, etc. are not explicitly included. The
achieved χ2 is comparable to the one found for our NLO

interactions [38,39], and typically around 16 for the 36

data points, see Table 3. An overview of the scattering
lengths and effective ranges for the various Y N chan-
nels is provided in Table 4. Preliminary results have
been reported in Ref. [62].

In the detailed discussion of the results, we focus on
the ones for the cutoff 550 MeV. Those for the other
considered cutoffs, 500 and 600 MeV, are very simi-
lar as one can conjecture from the χ2 values. Also, we
start with the ΣN channels where new data from the
J-PARC E40 experiment have become available [7–9].
Here, Σ+p scattering is of particular interest for the-
ory since it is a pure isospin I = 3/2 system. Thus,
there is no coupling to the ΛN channel which simplifies
the dynamics. Moreover, there are, in principle, rather
restrictive constraints from SU(3) symmetry. Specifi-
cally, the space-spin antisymmetric states (1S0, 3P0,1,2,
...) belong all to the {27} irrepresentation (irrep) of
SU(3) (cf. Table 2) [38,39] and thus the corresponding
interactions would be identical to those in the NN sys-
tem provided that SU(3) symmetry is exactly fulfilled.
While there is a sizable SU(3) symmetry breaking in
case of the 1S0 partial wave [63], the amplitudes in the
P - and higher partial waves could be much closer to
those found for NN scattering.

Note that the cross sections in the Σ+p → Σ+p and
Σ−p → Σ−p channels in past studies were obtained
from experiments with an incomplete angular coverage
by defining [58]

σ =
2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ . (19)

We use the same prescription, and specifically cos θmin =

−0.5 and cos θmax = 0.5, for obtaining “integrated”
Σ+p and Σ−p cross sections.
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SMS NLO SMS N2LO NLO13 NLO19

Λ [MeV] 500 550 600 500 550 600 600 600

aΛN
s −2.80 −2.79 −2.79 −2.80 −2.79 −2.80 −2.91 −2.91

rΛN
s 2.87 2.72 2.63 2.82 2.89 2.68 2.78 2.78

aΛN
t −1.59 −1.57 −1.56 −1.56 −1.58 −1.56 −1.54 −1.41

rΛN
t 3.10 2.99 3.00 3.16 3.09 3.17 2.72 2.53

Re aΣN (I=1/2)
s 1.14 1.15 1.10 1.03 1.12 1.06 0.90 0.90

Im aΣN
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Re aΣN (I=1/2)
t 2.58 2.42 2.31 2.60 2.38 2.53 2.27 2.29

Im aΣN
t −2.60 −2.95 −3.09 −2.56 −3.26 −2.64 −3.29 −3.39

a
ΣN (I=3/2)
s −4.21 −4.05 −4.11 −4.37 −4.19 −4.03 −4.45 −4.55

rΣN
s 3.93 3.89 3.75 3.73 3.89 3.74 3.68 3.65

a
ΣN (I=3/2)
t 0.46 0.47 0.47 0.38 0.44 0.41 0.44 0.43

rΣN
t −5.08 −4.74 −4.82 −5.70 −4.96 −5.72 −4.59 −5.27

aΣ
+p

s −3.41 −3.30 −3.44 −3.47 −3.39 −3.25 −3.56 −3.62

rΣ
+p

s 3.75 3.73 3.59 3.61 3.73 3.65 3.54 3.50

aΣ
+p

t 0.51 0.52 0.52 0.41 0.48 0.45 0.49 0.47

rΣ
+p

t −5.46 −5.12 −5.19 −6.74 −5.50 −6.41 −5.08 −5.77

Table 4: Scattering lengths (a) and effective ranges (r) for singlet (s) and triplet (t) S-waves (in fm), for ΛN , ΣN

with isospin I = 1/2, 3/2, and for Σ+p with inclusion of the Coulomb interaction.

3.1 The Σ+p channel

Σ+p scattering cross sections for the SMS Y N interac-
tions are presented in Fig. 1, and compared with data
and with the results obtained from the NLO19 poten-
tial. The latter are shown as bands, representing the
cutoff dependence [39]. On the upper left side the cross
section at low energies is displayed. This is the region
with the data of Eisele et al. [58], which are included
in the fitting procedure for the S-wave LECs. One can
see that the results for the SMS potentials are slightly
below those of NLO19. The main reason for that is that
we no longer impose strict SU(3) constraints on the S-
wave contact terms.

Once the S-wave LECs are fixed from a combined
fit to the Λp and ΣN cross sections, the differential
cross sections established in the E40 experiment are an-
alyzed. Interestingly, in the NLO case taking over the
LECs from the corresponding NN potential by Rein-
ert et al. [31] for the 3P0,1,2 partial waves, in accor-
dance with SU(3) symmetry, and assuming the LEC
in the 1P1 to be zero, yields already a good descrip-
tion of the E40 data in the region 440-550 MeV/c, cf.

Fig. 1 (center of the lower panel). For the N2LO in-
teraction all P -wave LECs are adjusted to the data.
Actually, here we explore two scenarios (denoted by
the superscripts a and b in the tables below so that
one can distinguish them), one where the resulting an-
gular distribution is similar to that obtained for NLO
(solid line) and one which produces an overall more pro-
nounced angular dependence (dashed line). The latter
is clearly preferred by the available data in that momen-
tum range. However, a view on the situation in the next
momentum region, 550-650 MeV/c, see Fig. 1 (lower
right), tells us that one has to be careful with con-
clusions. Here the experiment suggest an overall some-
what different angular dependence, which seems to be
more in line with a flat behavior or a very moderate
increase in forward direction. In any case, note that
the alternative fit provides an at least visually slightly
better description of the old low-energy data (lower
left). Indeed, those data from the momentum region
160-180 MeV/c [58] (Tlab ≈ 12 MeV) seem to exhibit
a more pronounced angular dependence than the E40
data at much higher momenta. Thus, it would be very
interesting to explore the energy region in between by
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Fig. 1 Cross section for Σ+p scattering as a function of plab. Results are shown for the SMS NLO (dash-dotted) and N2LO
(solid) Y N potentials with cutoff 550 MeV. The dashed line corresponds to an alternative fit at N2LO, see text. The cyan band is
the result for NLO19 [39]. The dotted line is the result for NLO19(600) with readjusted C3SD1

, see text. Data are from the E40
experiment [9] for the momentum regions 440− 550 and 550− 650 MeV/c, respectively, and from Refs. [58,64].

experiments. Such data could also help to pin down the
P -wave contributions more reliably since higher partial
waves should be much less important. For completeness,
let us mention that the fitting ranges considered for es-
tablishing the SMS NN potential are plab ≲ 480 MeV/c
at NLO and plab ≲ 540 MeV/c at N2LO [31].

The predictions by NLO19 are definitely at odds
with the E40 experiment. However, it should be said

that the pronounced rise of the cross section for back-
ward angles, excluded by the data, is mainly due to an
accidental choice of the LEC C3SD1

in the ΣN I = 3/2

contact interaction in [38,39]. Its value can be easily re-
adjusted, without any change in the overall quality of
those Y N potentials. Pertinent results, for NLO19(600)
as example, are indicated by dotted lines in Fig. 1.
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Fig. 2 ΣN I = 3/2 phase shifts: P -waves. Same description of the curves as in Fig. 1. For illustrating the extent of SU(3) symmetry
breaking, NN phase shifts [65,66] for partial waves in the pertinent {27} irrep are indicated by circles.

The integrated Σ+p cross section over a larger en-
ergy range is shown in Fig. 1 (upper right). Note that
again the angular averaging according to Eq. (19) is
applied to the theory results. It is likewise done to ob-
tain the indicated E40 data points because only dif-
ferential cross sections in a limited angular range are
available [9]. Once more the NLO19 potential does not
reproduce the trend of the data. Specifically, contrary
to the experiment, there is a rise of the cross section
for larger plab which we observed also for NLO13 and
which seems to be present also in results by the so-
called covariant chiral EFT [35, 37]. This rise is due
to an artificial behavior of the 3S1 partial wave, pre-
sumably caused by the non-local regulator employed
in our NLO13 and NLO19 potentials. Anyway, since

plab = 600 MeV/c corresponds to a laboratory energy
of Tlab ≈ 150 MeV, one is certainly in a region where
NLO and possibly even N2LO cannot be expected to be
still quantitatively reliable. In this context, one should
keep in mind that the ΛNπ channel opens around that
energy which clearly marks the formal limit for the ap-
plicability of any effective two-body potential. However,
whether the noticeable drop in the experimental cross
section, which can not be reproduced by theory, has
something to do with the opening of that channel or
not, remains unclear at present.

The authors of Ref. [9] have attempted to perform
a phase-shift analysis, including partial waves up to the
total angular momentum of J = 2, with the aim to de-
termine the phase in the 3S1 channel. For that different
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Fig. 3 ΣN I = 3/2 phase shifts: 1S0 and 3S1-3D1. Same description of the curves as in Fig. 1.

scenarios have been considered where the phase shifts in
the partial waves in the {27} irrep of SU(3), cf. Table 2,
were fixed either from NN results (exploiting SU(3)
symmetry) or from predictions of Y N models. Earlier
efforts for establishing the ΣN I = 3/2 phase shifts,
based on the differential cross section of Eisele et al.
(lower-left of Fig. 1), can be found in Refs. [72,73]. Our
predictions for the phase shifts are displayed in Figs. 2
and 3. For illustration we include the NN phase shifts
in the 3P0,1,2 partial waves (circles) which, as said,
would be identical to the ones for ΣN with I = 3/2

under strict validity of SU(3) symmetry. It is interest-
ing to see that the difference is indeed fairly small. In
comparison, the predictions of the chiral potentials for
1P1, not constrained by SU(3), vary sizably. The results

for the 1S0 and 3S1 partial waves shown in Fig. 3 are, of
course, strongly constrained by the available low-energy
cross section data. The behavior of the 1S0 is qualita-
tively similar to that in the NN case [31], as expected
from the approximate SU(3) symmetry. One can ob-
serve a large difference in the results for the mixing
angle ϵ1 between the SMS Y N potentials and NLO19.
As discussed above, its large value is the reason for the
rise of the cross section at backward angles, cf. Fig. 1.
At the time when NLO19 and NLO13 were established,
the existing data did not allow to fix the relevant LEC
(C3SD1

) reliably. However, it can be re-adjusted (see
the dotted line) without changing the overall χ2 and
then the pertinent results can be brought in line with
the E40 measurement.
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Fig. 4 Cross section for Σ−p scattering as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40
Collaboration [7] for the momentum regions 470− 550 and 550− 650 MeV/c, respectively, and from Refs. [58,67].

3.2 The Σ−p channel

Results for Σ−p elastic scattering are presented in Fig. 4.
The SMS Y N potentials produce a slightly weaker en-
ergy dependence of the integrated cross section than
NLO19. In the momentum region of the new E40 data
[7], plab = 500 − 700 MeV/c, the predictions of all our
Y N potentials are similar and in agreement with the

experiment. Also the differential cross sections agree
with the experiment, cf. the lower panel of Fig. 4. It
should be said, however, that the proper behavior in
forward direction remains somewhat unclear since the
experimental information is too sparse in that angular
region. Nonetheless, the data points available for the
momentum region 550 − 650 MeV/c could point to a
somewhat steeper rise for small angles. The predictions
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Fig. 5 Cross section for Σ−p → Λn as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40
Collaboration [8] for the momentum regions 470− 550 and 550− 650 MeV/c, respectively, and from Refs. [57,60].

based on NLO19 exhibit a sizable cutoff dependence. It
is due to the fact that the hadronic amplitude is over-
all attractive for some cutoffs and repulsive for others
so that there is either a destructive or constructive in-
terference with the attractive Coulomb interaction. In
case of a destructive interference there is a small dip
in the differential cross section at very forward angles.

Data with high resolution would be needed in order to
resolve that issue.

Results for the transition Σ−p → Λn are presented
in Fig. 5. Also in this case the predictions of the SMS
Y N potentials and those of NLO19 are rather simi-
lar. Specifically, all interactions yield a reaction cross
section in line with the E40 data [8]. The angular dis-
tributions are likewise reproduced, cf. Fig. 5 (center
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Fig. 6 Cross section for Σ−p → Σ0n as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [57,60].

and left of the lower panel). One should keep in mind
that in case of NLO19 no actual fitting of the P -wave
LECs was performed. The ones belonging to the {27}
and {10∗} irreps were taken over from fits to NN P -
waves, exploiting SU(3) symmetry constraints, whereas
the others were fixed qualitatively by requiring that the
contribution of each P -wave to the Λp cross section for
momenta above the ΣN threshold remains small [38].
We note that for Σ−p → Λn partial waves up to J = 8
are needed to achieve converged results for the differ-
ential cross section at 600 MeV/c.

In the context of the inelastic Σ−p data by Engel-
mann et al. [57], we would like to point to a footnote
in that paper which emphasizes the role of the Σ− life-
time in their determination of the cross sections. The
fact that the present value is almost 10% smaller [74]
suggests that the actual cross sections could be smaller,
too.

There are no new data for the charge-exchange re-
action Σ−p → Σ0n. The predictions of chiral EFT are
in agreement with the existing experimental evidence,
as one can see in Fig. 6.

3.3 The Λp channel

Results for Λp scattering are presented in Fig. 7. So
far there are no data from J-PARC for this channel.
The new Λp data from CLAS/Jlab [6] are at fairly high

momenta (plab ≥ 900 MeV/c) so that a quantitative
comparison with our NLO and N2LO predictions is not
really sensible. Nonetheless, we display the momentum
region up to their lowest data point (inverted triangle)
so that one can see that the trend of our predictions is
well in line with that measurement. Anyway, the low-
energy data are reproduced with similar quality by all
chiral potentials, as expected in view of the excellent
and low χ2 achieved in all fits. It is interesting though
that even the predicted cusp at the ΣN threshold is
practically identical, cf. Fig. 7 (upper right). This testi-
fies that the actual shape of the cusp is to a large extent
determined by the ΣN low-energy data [75] which, of
course, are all described well by the considered Y N po-
tentials as discussed above.

There are no genuine differential cross sections avail-
able for Λp scattering. However, some data on the an-
gular distribution and the forward/backward ratio can
be found in Refs. [55,56]. Those are shown in the lower
panel of Fig. 7 and compared with predictions normal-
ized to the number of events. Evidently, all our chiral
potentials predict the trend of the data that indicate
a rise of the cross section in forward direction. The
present data would favor a more pronounced angular
dependence as produced by one of the N2LO inter-
actions (solid line). But for a quantitative conclusion
more accurate data are needed. Also measurements for
somewhat higher momenta, closer to the ΣN thresh-
olds, would be quite instructive [39]. Such data are ex-
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Fig. 7 Cross section for Λp as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [55] (filled
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pected to be provided by the future E86 experiment at
J-PARC [42].

Results for ΛN phase shift in the S- and P -waves
are shown in Figs. 8 and 9. Like in case of ΣN dis-
cussed above, the predictions for the 1S0 and 3S1 par-
tial waves are strongly constrained by fitting the cross
section data. And, as already mentioned, like in our
previous works [38,39,76] the empirical binding energy

of the hypertriton 3
ΛH is used as a further constraint.

Thereby we can exploit the fact that the spin-singlet
and triplet amplitudes contribute with different weights
to the Λp cross section and to the 3

ΛH binding energy,
see Eq. (9) in [39]. Without that feature it would not be
possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave components of the Λp interac-
tion. A more detailed discussion on the hypertriton will
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Fig. 8 ΛN phase shifts: 1S0 and 3S1-3D1. Same description of the curves as in Fig. 1. The results for the 3S1 and 3D1 phases
are shown modulo 1800.

be provided in the next subsection. However, we want
to mention already here that we fixed the strength in
the spin-singlet interaction based on some exploratory
calculations with SMS NLO (550). The resulting scat-
tering length, as ≈ −2.80 fm, was then used to adjust
all other NLO and N2LO interactions. This value is
slightly smaller in magnitude that what has been found
and used for the NLO13 and NLO19 interactions with
non-local cutoff, see Table 4. Nonetheless, the chiral
Y N interactions with the new regularization scheme
tend to be overall slightly more attractive. This is best
seen in Fig. 8 from the 1S0 phase shifts, where the pre-
dictions by the SMS potentials drop off more slowly
with increasing momentum as compared to those of our
former Y N interactions.

As discussed in Ref. [75], most of the Y N potentials,
that include the ΛN -ΣN coupling and provide a quan-
titative description of the data, predict an unstable ΣN

bound state near the ΣN threshold. This is reflected in
the behavior of the 3S1-3D1 phase shifts, where either
the 3S1 or 3D1 phase pass through 90◦ [34,38]. In case
of the SMS potentials this happens in the 3D1 state.
Note that for convenience, and to keep the scales of the
figures commensurable, we show the results in Fig. 8
modulo 180◦.

The results for the P -waves are qualitatively rather
similar, except for the 1P1 where the NLO19 prediction
is of opposite sign. Certainly, the 3P states are all dom-
inated by the {27} irrep of SU(3) (Table 2) and, thus,
strongly constrained by fixing the pertinent LECs in a
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Fig. 9 ΛN phase shifts: P -waves. Same description of the curves as in Fig. 1.

fit to the NN phases (in case of NLO19 and SMS NLO)
and to the new Σ+p data (in the SMS N2LO Y N poten-
tials). It will be interesting to see whether those predic-
tions are consistent with Λp differential cross sections,
once such data become available from J-PARC [42].

Recently, the Λp two-particle momentum correla-
tion function has been measured with high precision
by the ALICE Collaboration in pp collisions at 13 TeV
[12]. An exploratory analysis of those data suggests
that the Λp interaction could be slightly less attractive
than what follows from the low-energy Λp cross sec-
tion data [55,56]. However, since additional ingredients
and parameters are required for a more detailed evalua-
tion [77–79], those data cannot be included straightfor-
wardly into our fitting procedure. Therefore, we refrain

from taking into account constraints provided by such
correlation functions at the present stage.

Finally, we want to mention that there are data for
the Λ polarization, αP̄ (θ∗Λ), for forward and backward
angles, see Table II of Ref. [56]. α is the weak decay
parameter of the Λ [74]. These suggest that the po-
larization is practically consistent with zero for plab ≤
320 MeV/c. Since the experimental uncertainties are
rather large, we do not display these data here. How-
ever, we want to mention that the results of the SMS
potentials for αP in that momentum region are all
smaller than 0.1. Also, we would like to point to Ref. [42]
where results of NLO13 and NLO19 for the Λp analyz-
ing power are shown, and where one can see that those
predictions are likewise rather small at low momenta.
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3.4 A = 3 and A = 4 Λ hypernuclei

The binding energy of the hypertriton is obtained by
solving Faddeev equations in momentum space. This
method is well suited for the chiral Y N and NN po-
tentials which involve local as well as non-local com-
ponents. A detailed description of the formalism can
be found in [80, 81]. In the discussion, we focus on the
separation energy which is the difference between the
hypertriton binding energy and that of the core nucleus,
i.e. that of the deuteron. As shown by us in Ref. [39],
the Λ separation energies of light hypernuclei are not
very sensitive to the employed NN interaction. There-
fore, we use in all calculations the same state-of-the-art
chiral NN interaction, namely the SMS NN potential
of Ref. [31] at order N4LO+ with cutoff Λ = 450 MeV.
The variation of the separation energy with the cut-
off of the chiral NN potentials is only in the order of
10 keV, see Table 3 of Ref. [39]. Note that some recent
studies suggest a larger dependence on the NN poten-
tial [82,83]. This is in part due to using lower order NN

interactions but also because the dependence on the
NN interaction seems to be larger for the LO YN in-
teractions. We are currently investigating the NN force
dependence in more detail [84]. Our preliminary results
confirm the small NN force dependence of the order of
10 keV for the NLO and N2LO calculations presented
here. The dependence is certainly much smaller than
the experimental uncertainty of ±40 keV.

As already mentioned, we require the hypertriton
to be bound as an additional constraint for our Y N

interaction. However, we do not include the 3
ΛH sep-

aration energy in the actual fitting procedure because
of its large experimental uncertainty. While for a long
time the value given by Jurič et al. [85], BΛ = 0.13 ±
0.05 MeV, has been accepted as the standard, recent
measurements reported by the STAR and ALICE Col-
laborations indicate that the separation energy could be
either significantly larger (0.41± 0.12± 0.11 MeV [14])
or somewhat smaller (0.072± 0.063± 0.036 MeV [15]).
The latest average from the Mainz Group is 0.148 ±
0.040 MeV [86]. New high-precision experiments to de-
termine the hypertriton binding energy are planned at
the Mainz Microtron (MAMI) [86] and at JLab [87] and
will hopefully resolve those discrepancies.

Given these variations, as a guideline of the present
work, we aimed at achieving a 3

ΛH separation energy in
the order of 150 keV with our chiral Y N interactions.
An arbitrary fine-tuning to one or the other value is not
really meaningful at the present stage. It would be also
questionable in view of the fact that there should be a
contribution from chiral three-body forces (3BF) [43].
Those could contribute up to 50 keV to the binding, as

argued in Ref. [39]. Incidentally, since the present ex-
perimental uncertainties exceed that estimation, there
is no way of fixing the pertinent 3BF LECs from the hy-
pertriton and, therefore, we refrain from including 3BFs
in the present work. A possible and viable way to fix
the 3BFs is, in our opinion, via studies of the 4

ΛH/4ΛHe
and 5

ΛHe systems and we intend to explore that option
in the future.

Results of the SMS Y N potentials for the hyper-
triton separation energy are summarized in Table 5. It
is interesting to see that the predicted values lie fairly
close together, keeping in mind, of course, that the NLO
and N2LO potentials have been all tuned to the same
ΛN scattering length in the 1S0 partial wave. Evidently,
the separation energies are well in line with the exper-
imental values by Jurič et al. and agree also with the
new ALICE measurement within the uncertainty. Com-
pared to the previous chiral Y N interactions NLO13
and NLO19, the separation energies are slightly larger
indicating that the new interactions are more attractive
than the previous ones.

It is now interesting to apply the same interactions
to a more densely bound system, namely 4

ΛHe. For this
hypernucleus, charge symmetry breaking (CSB) is ex-
pected to contribute of the order of 100 keV to the
separation energies [89, 90]. We do not include CSB
terms here and likewise no Y NN interactions since for
now we are only interested in a first comparison with
our previous calculations for NLO13 and NLO19. With-
out CSB interactions, the mirror hypernuclei 4

ΛHe and
4
ΛH have very similar separation energies. Therefore, we
only present results for 4

ΛHe.
The binding energy for A = 4 hypernuclei are ob-

tained by solving Yakubovsky equations in momentum
space [81]. Such calculations require a large number of
partial wave states for being converged. We have used
here all partial waves with orbital angular momenta up
to l = 6 and a sum of the three orbital angular momenta
related to the three relative momenta necessary up 8.
With this restriction of partial waves, our accuracy is
of the order of 50 keV for the separation energies.

The results are summarized in Table 6. It can be
seen that the trend to larger separation energies ap-
plies also for A = 4. In particular, for the Jπ = 0+

ground state, the energies are now significantly closer
to the experiment, where the current average value is
2.347 ± 0.036 MeV [91]. Also for the Jπ = 1+ excited
state the predictions are close to the empirical value.
Here the experimental average is 0.942 ± 0.036 MeV.
In this case the separation energies are also similar to
those obtained for the NLO19 interaction [39]. These re-
sults indicate that the state/spin dependence of ΛNN

(and/or ΣNN) three-body forces should be different
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Y N potential BΛ [MeV] E [MeV] PΣ [%] UΛ(0) UΣ(0)

SMS LO(700) 0.135 −2.359 0.20 −37.8 10.2

SMS NLO(500) 0.127 −2.350 0.28 −30.1 0.2
SMS NLO(550) 0.124 −2.347 0.23 −32.1 −1.6
SMS NLO(600) 0.122 −2.345 0.32 −29.7 −3.1

SMS N2LO(500) 0.147 −2.371 0.25 −33.1 6.4
SMS N2LO(550)a 0.139 −2.362 0.25 −38.5 2.5
SMS N2LO(550)b 0.125 −2.348 0.24 −35.9 2.5
SMS N2LO(600) 0.172 −2.395 0.22 −37.8 0.1

NLO13(600) 0.090 −2.335 0.25 −21.6 17.1
NLO19(600) 0.091 −2.336 0.21 −32.6 16.9

Table 5: Overview of results for the hypertriton up to N2LO and for the Λ and Σ single-particle potentials in
symmetric nuclear matter at saturation density. The superscripts a and b denote the two variants introduced in
Sect. 3.1 with different P -wave interactions. For the NN interactions SMS N4LO+(450) is used [31]. The NLO13
and NLO19 results are from [39].

for the new series of interactions compared to NLO19
and NLO13. In any case it is interesting to see that the
SMS interactions lead to larger Σ probabilities than
NLO19. In past calculations it was observed that such
larger contributions of Σ’s to the hypernuclear states
usually lead to smaller binding energies, c.f. the com-
parison of NLO13 and NLO19.

3.5 Λ and Σ in nuclear matter

For completing the picture, we include results for the
in-medium properties of the Λ and Σ based on the new
Y N interactions. Specifically, we provide the predic-
tions for the single-particle potentials UY (pY ) at nu-
clear matter saturation density (kF = 1.35 fm−1), eval-
uated self-consistently within a conventional G-matrix
calculation, utilizing the formalism described in detail
in Refs. [39,52]. As one can see from Table 5, UΛ(pΛ =

0) for the SMS Y N potentials is around −30 to −38 MeV,
while UΣ(pΣ = 0) is around −3 to +6 MeV.

The predicted value for UΛ(0) is comparable to the
result for NLO19 and also well in line with the usually
cited empirical value of UΛ = −27 ∼ −30 MeV [92].
Thus, the conclusions drawn in Refs. [93, 94] on the
properties of neutron stars and a possible solution of
the hyperon puzzle based on the NLO13 and NLO19 po-
tentials remain unchanged. In that works it was argued
that the combined repulsive effects of the two-body in-
teraction and a chiral ΛNN three-body force could be
sufficiently strong to prevent the appearance of Λ hy-

perons in neutron stars. We want to emphasize that the
somewhat larger result for N2LO (550)a is mainly due
to the P -wave contributions. The alternative fit (550)b
considered in the discussion of the Σ+p cross section
in Sect. 3.1, where only the P -waves were readjusted,
yields UΛ = −35.9 MeV.

By contrast, UΣ is definitely less repulsive than what
was found for NLO13 and NLO19 and also below the
range of 10 − 50 MeV advocated in Ref. [92]. A de-
tailed comparison reveals that the more strongly repul-
sive UΣ of NLO13 and NLO19 is primarily due to the
3S1 interaction in the I = 3/2 channel which is more
repulsive at large momenta for those potentials. How-
ever, the latter feature is precisely the reason why for
NLO19 the scattering results are in conflict with the J-
PARC data on Σ+p (cf. Fig. 1), as we have discussed in
Sect. 3.1. Specifically, the artificial rise of the cross sec-
tion at large momenta is a direct result of the increas-
ingly negative values for the 3S1 phase shift (Fig. 3).
The same conflicting situation occurs for NLO13 and
our LO interactions. Indeed, as far as we can see, also
phenomenological Y N potentials that predict a more
strongly repulsive UΣ , like those of Fujiwara et al. [95]
based on the constituent-quark model, overestimate the
Σ+p cross section at large momenta, see Fig. 24 in [9].

At the moment, it remains unclear to us whether
one can reconcile the constraints provided by the J-
PARC data for the Σ+p interaction with the request
for a strongly repulsive UΣ . Clearly, with regard to the
Σ single-particle potential, the situation could be more
complicated because of the overall spin-isospin struc-
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4
ΛHe

Jπ = 0+ Jπ = 1+

Y N potential BΛ [MeV] PΣ [%] BΛ [MeV] PΣ [%]

SMS LO(700) 3.088 1.36 2.275 1.72

SMS NLO(500) 2.009 2.32 1.041 2.05
SMS NLO(550) 2.102 2.13 1.102 1.96
SMS NLO(600) 2.021 2.34 0.927 1.69

SMS N2LO(500) 2.001 2.01 1.002 2.07
SMS N2LO(550)a 2.024 1.81 1.251 2.01
SMS N2LO(550)b 1.969 1.82 1.188 1.99
SMS N2LO(600) 2.263 1.79 1.181 1.81

NLO13(600) 1.477 2.02 0.580 1.51
NLO19(600) 1.461 1.37 1.055 1.68

Table 6: Overview of results for the 4
ΛHe separation energy up to N2LO. The superscripts a and b denote the two

variants introduced in Sect. 3.1 with different P -wave interactions. For the NN interactions SMS N4LO+(450) [31]
is used. For our new SMS results, we also apply the properly adjusted three-nucleon interaction (see [88]). The
NLO13 and NLO19 results are from [39]

ture of the ΣN interaction where some of the rele-
vant S-waves are attractive and others repulsive so that
there are possible cancellations in the evaluation of UΣ .
That being said, and may be more importantly, one
should keep in mind that the Λ single-particle poten-
tial follows from the rich spectrum of bound Λ hypernu-
clei and can be considered as well established. Evidence
for the Σ single-particle potential comes only from the
analysis of level shifts and widths of Σ− atoms and from
measurements of inclusive (π−,K+) spectra related to
Σ−-formation in heavy nuclei [92]. It is worth mention-
ing that a conflicting situation has been likewise ob-
served for the Ξ single-particle potential. Also in that
case the results from Brueckner calculations, using Y N

interactions either constrained by available data [41] or
from lattice QCD simulations [96] differ noticeably from
phenomenological results deduced again mainly from
atomic states and inclusive (K−, K+) spectra [92,97].

3.6 Uncertainty estimate

Since the range and the strength of the Y N interaction
is comparable to that in the NN system, considering
the approximate validity of SU(3) flavor symmetry, we
expect overall a very similar convergence pattern with
increasing order in the chiral expansion as that found in
the NN studies in Refs. [31,45]. Anyway, to corroborate
this expectation, we adopt here the tools proposed in

Ref. [45] for an uncertainty estimate and present some
selected results below. For simplicity reasons, we focus
on the elastic channels, namely Λp and Σ+p. One can
see from the NN results [31] that S- and, in general,
also P -waves are already well described at the N2LO
level, say for laboratory energies up to 150 MeV. The
situation is different for D- and higher partial waves be-
cause, in this case, contact terms appear only at N3LO
or even higher order.

The concrete expression used to calculate an uncer-
tainty ∆XN2LO(k) to the N2LO prediction XN2LO(k)

of a given observable X(k) is [45]

∆XN2LO(k) = max

(
Q4 ×

∣∣∣XLO(k)
∣∣∣,

Q2 ×
∣∣∣XLO(k)−XNLO(k)

∣∣∣,
Q×

∣∣∣XNLO(k)−XN2LO(k)
∣∣∣) , (20)

where the expansion parameter Q is defined by

Q = max

(
k

Λb
,
Mπ

Λb

)
, (21)

with k the on-shell center-of-mass momentum corre-
sponding to the considered laboratory energy/momen-
tum, and Λb the breakdown scale of the chiral EFT
expansion. For the latter, we take over the value es-
tablished in Ref. [45], i.e. Λb ∼ 600 MeV. Analogous
definitions are used for calculating the uncertainty up



20

to NLO. Note that the quantity X(k) represents not
only a “true” observable such as a cross section or an
analyzing power, but also a phase shift.

In Figs. 10 and 11, we show our uncertainty esti-
mates for the cross sections and the S-wave phase shifts
for Λp and Σ+p following the procedure proposed in
Ref. [45]. Certainly, for addressing the question of con-
vergence thoroughly, orders beyond N2LO are needed.
Higher orders are also required to avoid that acciden-
tally close-by results lead to an underestimation of the
uncertainty. For the Y N interaction, any uncertainty
estimate is difficult since the data are not sufficient to
unambiguously determine all LECs. For example, recall
that the strength of the ΛN interaction in the 1S0 par-
tial wave was fixed “by hand” and not based on actual
Λp scattering data. For this reason, there is definitely
some bias in the quantification of the uncertainty of
phase shifts in individual partial waves. Nonetheless,
we want to emphasize that the estimated uncertainty
appears sensible and also plausible. In particular, it en-
cases the variations due to the regulator dependence
and, thus, is consistent with the expectation that cut-
off variations provide a lower bound for the theoretical
uncertainty [45]. For details of the method and a thor-
ough discussion of the underlying concept, we refer the
reader to [98]. We should add that in case of the chiral
NN interaction more sophisticated tools like a Bayesian
approach [99] have been applied, too.

4 Summary and outlook

In the present work, we have established a hyperon-
nucleon potential for the strangeness S = −1 sector
(ΛN , ΣN) up to next-to-next-to-leading order in the
chiral expansion. SU(3) flavor symmetry is imposed
for constructing the interaction, however, the explicit
SU(3) symmetry breaking by the physical masses of
the pseudoscalar mesons (π, K, η) and in the leading-
order contact terms is taken into account. A novel reg-
ularization scheme, the so-called semilocal momentum-
space regularization, has been employed which has been
already successfully applied in studies of the nucleon-
nucleon interaction within chiral effective field theory
up to high orders [31].

An excellent description of the low-energy Λp, Σ−p

and Σ+p scattering cross sections could be achieved
with a χ2 of 15-16 for the commonly considered 36 data
points [38]. At low energies, the results are also very
close to those of our earlier Y N interactions NLO13 [38]
and NLO19 [39], that are based on a different regular-
ization scheme. New measurements of angular distri-
butions for the ΣN channels from J-PARC [7–9] have
been analyzed in an attempt to determine the strength

of the contact interactions in the P -waves. Although
those data can be fairly well described, considering the
experimental uncertainties and the fact that the perti-
nent momenta plab ≳ 450 MeV are close to the limit
of applicability of the N2LO interaction, they are not
included in the total χ2.

Separation energies for the hypertriton have been
presented. These are not “true” predictions of the the-
ory, because we required the 3

ΛH to be bound as ad-
ditional constraint to fix the spin dependence of the
ΛN interaction. Anyway, the obtained values of 120-
170 keV are well within the range of the presently ex-
isting experimental evidence [14, 15, 86, 91]. Compared
to NLO13 and NLO19, the new interaction seems to be
more attractive. This also shows up in the results for
4
ΛHe which are closer to the experimental values. A sim-
ple uncertainty estimate for the chiral expansion [45],
performed for a selected set of Y N observables, exhibits
a similar pattern as has been found for the NN inter-
action. Certainly, at the level of N2LO one can not ex-
pect to see fully converged results, in contrast to the
NN sector where the calculation have progressed up to
N4LO (and beyond) [31].

As a next step, one should explore the Y N potential
in calculations of light Λ-hypernuclei within, e.g., the
no-core shell model (feasible up to A ≈ 10). Of course,
for that chiral (ΛNN , ΣNN) three-body forces should
be included, which arise at N2LO in the chiral expan-
sion [43]. Moreover, a possible charge-symmetry break-
ing in the Λp and Λn interactions should be introduced.
Such a CSB component has been found to be essential
for understanding the level splittings in the 4

ΛH-4ΛHe
mirror nuclei [89, 90]. For example, an earlier study by
us, based on the NLO13 and NLO19 interactions, sug-
gests that ∆as = aΛp

s −aΛn
s ≈ 0.62±0.08 fm for 1S0 and

∆at ≈ −0.10± 0.02 fm for 3S1 [89]. Clearly, the repro-
duction of the large CSB effect in the 1S0 partial wave
requires a noticeable modification of the present ΛN in-
teraction. In any case, one has to keep in mind that the
actual CSB splittings for 4

ΛH-4ΛHe are not yet that well
settled experimentally, cf. Refs. [16, 91, 100]. Finally, a
more elaborate effort to determine the strength of the
contact terms in the P -waves should be done in the fu-
ture when Λp angular distributions from the J-PARC
E86 experiment have become available [42].
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Appendix A: Semilocal momentum-space
baryon-baryon potential at NLO and N2LO

In order to implement the local cutoff in the two-meson
contributions we follow Ref. [31] and write the corre-
sponding potentials in terms of their spectral represen-
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tation:
V (q) =

2

π

∫ ∞

2MP

µdµ
ρ(µ)

µ2 + q2
,

ρ(µ) = ImV (q = 0+ − iµ) , (A.1)
with q the momentum transfer q = |p ′ − p | and MP

the mass of the exchanged meson. The regularized po-
tential is then given by

V (q) = e−
q2

2Λ2
2

π

∫ ∞

2MP

µdµ
ρ(µ)

µ2 + q2
e−

µ2

2Λ2 . (A.2)

Appendix A.1: Contributions at NLO

Diagrams representing the contributions at NLO (chi-
ral order ν = 2) are shown in Fig. 12. At NLO one ob-

tains a central potential (VC), a spin-spin potential (VS)

and a tensor-type potential (VT ) [38], so that V (2) =

V
(2)
C + σ1 · σ2 V

(2)
S + σ1 · qσ2 · qV

(2)
T . We provide

here explicit expressions of the irreducible potentials
for two-pion exchange [31, 101]. Clearly, those formu-
lae are also valid for ηη and/or KK (KK̄) exchange.
General expressions of the spectral functions for non-
identical meson masses are given in Appendix B below.

V
(2)
C,S(q) =

2q4

π

∫ ∞

2Mπ

dµ
ρC,S(µ)

µ3 (µ2 + q2)
, V

(2)
T (q) = −2q2

π

∫ ∞

2Mπ

dµ
ρT (µ)

µ (µ2 + q2)
. (A.3)

The contributions (spectral functions) of the individ-
ual diagrams are:

Planar box (pb)

ρpbC (µ) = − N

3072πf4
0

√
µ2 − 4M2

π µ

×(−23µ4 + 112µ2M2
π − 128M4

π), (A.4)

ρpbT (µ) =
ρpbS (µ)

µ2
=

N
√
µ2 − 4M2

π

256πf4
0 µ

. (A.5)

Crossed box (xb)

ρxbC (µ) = −ρpbC (µ),

ρxbS (µ) = ρpbS (µ),

ρxbT (µ) = ρpbT (µ). (A.6)

Triangle diagrams (tr)

ρC(µ) = −
N

√
µ2 − 4M2

π

3072πf4
0 µ

(5µ2 − 8M2
π). (A.7)

(A.8)

Football diagram (fb)

ρC(µ) = −N (µ2 − 4M2
π)

3/2

6144πf4
0 µ

. (A.9)

The quantities N are an appropriate product of cou-
pling constants and isospin factors:

Npb,xb = fB1BilM1fBilB3M2

×fB2BirM2fBirB4M1(2f0)
4 IB1B2→B3B4 ,

N tr = fB1BiM1
fBiB3M2

(2f0)
2 IB1B2→B3B4

,

Nfb = IB1B2→B3B4
. (A.10)

The isospin factors are summarized in Table 7 whereas
the coupling constants are specified in Eqs. (4). Bil and
Bir denote the (left and right) baryons in the intermedi-
ate state. Note that the relations (A.6) concern only the
µ dependence, but not the factors Npb and Nxb! In case
of the NN system the expressions for the spectral func-
tions (and the potential) can be reduced to those given
in Ref. [31] by simply representing the pertinent isospin
coefficients in Table 7 in operator form: −2 τ 1 ·τ 2+3 for
the planar box, 2 τ 1·τ 2+3 for the crossed box, −4 τ 1·τ 2

for the triangle diagrams, and 8 τ 1 · τ 2 for the football
diagram. Then, since V xb

C = −V pb
C , see Eq. (A.6), the

central component of the spectral function (potential)
is proportional to τ 1 · τ 2 (denoted by ηC and WC , re-
spectively, in Ref. [31]), while for the spin- and tensor
components the contributions from planar and crossed
box add up and the isospin dependence drops out (ρS,T
and VS,T in Ref. [31]).

Appendix A.2: Contributions at N2LO

Diagrams that arise at N2LO (ν = 3) are shown in
Fig. 13. It should be noted, however, that only the
triangle diagrams contribute. There is no contribution
from the football diagram because of parity conser-
vation. The potential consists again of central, spin-
spin, and tensor components, V (3)

C,S,T , and those compo-
nents can be evaluated from representations analogous
to Eq. (A.3). The spectral functions in question are
given by [101]

ρC(µ) =
N1

512µf4
0

(µ2 − 2M2
π) +

N2

256µf4
0

(µ2 − 2M2
π)

2,
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Fig. 12 Relevant diagrams at next-to-leading order. Solid and dashed lines denote octet baryons and pseudoscalar mesons,
respectively. From left to right: planar box, crossed box, left triangle, right triangle, football diagram. Note that from the planar
box, only the irreducible part contributes to the potential.

transition planar crossed triangle triangle football
(isospin) box box left right diagram

NN → NN

(I = 0) NN 9 NN −3 N 12 N 12 −24

(I = 1) NN 1 NN 5 N −4 N −4 8

ΣN → ΣN

(I = 1/2) ΣN 4 ΣN 0 N 16 Σ 4 −32

ΛN 3 ΛN −1 Λ 4

(I = 3/2) ΣN 1 ΣN 3 N −8 Σ −2 16

ΛN 0 ΛN 2 Λ −2

ΛN → ΣN

(I = 1/2) ΣN 2
√
3 ΣN −2

√
3 N 0 Σ 4

√
3 0

ΛN → ΛN

(I = 1/2) ΣN 3 ΣN 3 N 0 Σ 0 0

Table 7: Isospin factors I for the NLO diagrams. The baryons in the intermediate state of the planar box, crossed
box, and the triangle diagrams are indicated to the left of the factors.

(A.11)

ρT (µ) =
ρS(µ)

µ2
= − N3

512µf4
0

(µ2 − 4M2
π). (A.12)

The coefficients Ni (i = 1, 2, 3) are combinations
of the coupling constants at the involved BBM ver-
tices and of elements of the sub-leading (O(q2)) meson-
baryon Lagrangian [102,103], in particular of the meson-
baryon LECs bD, bF , b0, b1-b4, and d1-d3, see Sect. IV
in Ref. [43] for details and/or Sect. 4.3 in [46]. The con-
crete relations are as follows:
for NN

N1 = 96 c1 g
2
A M2

π ,

N2 = 12 c3 g
2
A,

N3 = −4 c4 g
2
A τ 1 · τ 2, (A.13)

with c1 = (2b0 + bD + bF )/2, c3 = b1 + b2 + b3 + 2b4,
c4 = 4(d1 + d2) [104], where the ci are the conventional
LECs used in the nucleonic sector.

for ΣN

N1 =
[
48 cΣ1 g2A + 32 c1 (2αgA)

2

+16 c1
4

3
((1− α)gA)

2

]
M2

π ,

N2 = 4cΣ3 g2A + 4c3 (2αgA)
2 + 2c3

4

3
((1− α)gA)

2,

N3 = −
(
4dΣ g2A+

c4 (2αgA)
2 + c4

4

3
((1− α)gA)

2

)
T 1 · τ 2,

(A.14)
with cΣ1 = b0 + bD, cΣ3 = 4b1 + 2b2 + 3b4, and dΣ =

4d2+d3 and ⟨T 1 ·τ 2⟩ = −2, 1 for isospin I = 1/2, 3/2.
for ΛN

N1 =

[
16 cΛ1 g2A + 48 c1

4

3
((1− α)gA)

2

]
M2

π ,

N2 = 4 cΛ3 g2A + 6 c3
4

3
((1− α)gA)

2,

N3 = 0, (A.15)
with cΛ1 = 3b0 + bD, cΛ3 = 2b2 + 3b4.
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Fig. 13 Relevant diagrams at next-to-next-to-leading order. Solid and dashed lines denote octet baryons and pseudoscalar mesons,
respectively. Triangle (left) and football (right) diagram.

for ΛN → ΣN

N1 = 0,

N2 = 0,

N3 = 16d1 g2A + 2
√
3 c4

4√
3
α(1− α)g2A. (A.16)

Note that in Eqs. (A.14) - (A.16) we have re-expressed
the ΣΣπ and ΣΛπ coupling constants in terms of the
SU(3) relations given in Eq. (4), i.e. fΣΣπ = 2αfNNπ

and fΣΛπ = (2/
√
3)(1−α)fNNπ with fNNπ = gA/(2fπ).

In our calculation we take the πN LECs, i.e. c1-c4,
from Refs. [105,106], obtained from matching the chiral
expansion of the pion-nucleon scattering amplitude to
the solution of the Roy-Steiner equations. Specifically
we use the values employed in the SMS NN poten-
tial up to N2LO. Fixing the values for the other LECs,
without direct experimental evidence which can be used
as constraint, is, however, difficult, and to some extent
arbitrary. Here we try to find the best possible set in-
stead of insisting on an intrinsically consistent selection.
Since theoretical studies of the baryon masses yield, in
general, b1,...,b4 values that imply a c3 very far away

from the results obtained from πN scattering we con-
sider the values from decuplet saturation as the most
realistic choice. Accordingly, we take the values for the
b’s and d’s (i.e. b1-b4, d1-d3) for the πΣ and πΛ vertices
from Ref. [107]. Since bD, bF , b0 are zero in this case, we
use here values from Ref. [108], fixed in a study of the
baryon mass splittings and the πN sigma term. Anyway
exploratory calculations indicated that the Y N results
are fairly insensitive to the specific values adopted for
the LECs bD, bF , b0. The actual values used are (all in
units of GeV−1): c1 = −0.74, c3 = −3.61, c4 = −2.44

[105, 106], bD = 0.066, bF = −2.13, b0 = −0.517 [108],
b1 = 0.59, b2 = 0.76, b3 = −1.01, b4 = −1.51, d1 = 0.25,
d2 = 0.08, d3 = −0.50 [107].

Appendix A.3: Subtractions in the spectral integrals

As in case of the LO term and following the proce-
dure in the NN interaction [31] we perform subtrac-
tions according to Eqs. (42) and (44) of that reference
in the spectral integrals for the NLO and N2LO poten-
tials so that the final form of those contributions read

V
(2,3)
C (q) = e−

q2

2Λ2
2

π

∫ ∞

2Mπ

dµ

µ3
ρ
(2,3)
C (µ)

(
q4

µ2 + q2
+ C2

C,1(µ) + C2
C,2(µ) q

2

)
e−

µ2

2Λ2 ,

V
(2,3)
S (q) = e−

q2

2Λ2
2

π

∫ ∞

2Mπ

dµ

µ3
ρ
(2,3)
S (µ)

(
q4

q2 + µ2
+ C2

S,1(µ) + C2
S,2(µ) q

2

)
e−

µ2

2Λ2 ,

V
(2,3)
T (q) = −e−

q2

2Λ2
2

π

∫ ∞

2Mπ

dµ

µ3
ρ
(2,3)
S (µ)

(
q2

µ2 + q2
+ C1

T (µ)

)
e−

µ2

2Λ2 , (A.17)

The functions C2
i (µ) and C1

T (µ) appearing in the
(single- and double-)subtracted spectral integrals have
the form [31]:

C2
C,1(µ) =

[
2Λµ2

(
2Λ4 − 4Λ2µ2 − µ4

)
+
√
2πµ5e

µ2

2Λ2
(
5Λ2 + µ2

)
erfc

(
µ√
2Λ

)]

/(4Λ5) ,

C2
C,2(µ) = −

[
2Λ

(
6Λ6 − 2Λ2µ4 − µ6

)
+
√
2πµ5e

µ2

2Λ2
(
3Λ2 + µ2

)
erfc

(
µ√
2Λ

)]
/(12Λ7) ,

C2
S,1(µ) =

[
2Λµ2

(
2Λ4 − 4Λ2µ2 − µ4

)
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+
√
2πµ5e

µ2

2Λ2
(
5Λ2 + µ2

)
erfc

(
µ√
2Λ

)]
/(6Λ5) ,

C2
S,2(µ) = −

[
2Λ

(
15Λ6 − Λ4µ2 − 3Λ2µ4 − 2µ6

)
+
√
2πµ5e

µ2

2Λ2
(
5Λ2 + 2µ2

)
erfc

(
µ√
2Λ

)]
/(30Λ7) ,

C1
T (µ) = −

[
2Λ

(
15Λ6 − 3Λ4µ2 + Λ2µ4 − µ6

)
+
√
2πµ7e

µ2

2Λ2 erfc
(

µ√
2Λ

)]
/(30Λ7) . (A.18)

Appendix B: Spectral functions for unequal
meson masses

For completeness we provide here expressions for the
spectral functions when the masses of the mesons are
different. Those can be used to evaluate the contribu-
tions from exchanges of πK, ηK, etc., which arise for-
mally in SU(3) chiral EFT at NLO and N2LO. How-
ever, as already emphasized in the main text, given the
present choice of the cutoff in the local regulator of
Λ = 500 − 600 MeV, those contributions are strongly
suppressed and, therefore, omitted in the present study.
Denoting the meson masses by M1 and M2 the spectral
functions are as follows:
for NLO

ρpbC (µ) =

− N

3072πf4
0√

[µ2 − (M1 +M2)2] [µ2 − (M1 −M2)2]

×
[
− 23µ4 +

(M2
1 −M2

2 )
4

µ4
+ 56µ2(M2

1 +M2
2 )

+8
(M2

1 +M2
2 )(M

2
1 −M2

2 )
2

µ2

− 2(21M4
1 + 22M2

1M
2
2 + 21M4

2 )

]
(B.19)

ρpbT (µ) =
ρpbS (µ)

µ2

=
N
√

[µ2 − (M1 +M2)2] [µ2 − (M1 −M2)2]

256πµ2f4
0

(B.20)
For crossed-box diagrams the relations given in Eq. (A.6)
apply.

ρtrC (µ) = −
N
√

[µ2 − (M1 +M2)2] [µ2 − (M1 −M2)2]

3072πµ4f4
0

×
[
5µ4 − 4µ2(M2

1 +M2
2 )− (M2

1 −M2
2 )

2
]

(B.21)

ρfbC (µ) =
N

[
µ2 − (M1 +M2)

2
] 3

2
[
µ2 − (M1 −M2)

2
] 3

2

6144πµ4f4
0

(B.22)

for N2LO

ρtrC (µ) =
N1

512µf4
0

(µ2 −M2
1 −M2

2 )

+
N2

256µf4
0

(µ2 −M2
1 −M2

2 )
2 (B.23)

ρtrT (µ) =
ρtrS (µ)

µ2

= − N3

512µ3f4
0

[
µ2 − (M1 +M2)

2
]

×
[
µ2 − (M1 −M2)

2
]

(B.24)

Appendix C: Tables with LECs

The Y N LECs employed in the present study are sum-
marized in Tables 8 and 9. With those LECs the contri-
bution of the contact terms to the potentials in the var-
ious Y N channels can be calculated, based on Eqs. (8)
to (17). With regard to the P -waves SU(3) symmetry
is preserved so that the potentials follow from the ap-
propriate SU(3) combination as specified in Table 2.
In case of the 1S0 and 3S1-3D1 partial waves, leading-
order SU(3) breaking terms have been considered in
the fitting procedure, in line with the power count-
ing [50]. Here, we list the LECs in the isospin basis for
the ΛN and ΣN channels and the ΛN ↔ ΣN transi-
tion (Table 8). Since for the 3S1-3D1 partial wave SU(3)
symmetry implies that VΛN→ΛN = VΣN→ΣN (I=1/2) =

(C8a + C10∗)/2, cf. Table 2, one can directly read off
the amount of symmetry breaking in the contribution
of the contact potential from the values in Table 8. In
general, it is small or even zero.
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