001005788 001__ 1005788
001005788 005__ 20240213111717.0
001005788 0247_ $$2doi$$a10.1016/j.egyai.2023.100250
001005788 0247_ $$2Handle$$a2128/34255
001005788 0247_ $$2WOS$$aWOS:001146215000001
001005788 037__ $$aFZJ-2023-01633
001005788 082__ $$a624
001005788 1001_ $$0P:(DE-Juel1)192442$$aTrebbien, Julius$$b0$$eCorresponding author$$ufzj
001005788 245__ $$aUnderstanding electricity prices beyond the merit order principle using explainable AI
001005788 260__ $$aAmsterdam$$bElsevier ScienceDirect$$c2023
001005788 3367_ $$2DRIVER$$aarticle
001005788 3367_ $$2DataCite$$aOutput Types/Journal article
001005788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680607663_11529
001005788 3367_ $$2BibTeX$$aARTICLE
001005788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005788 3367_ $$00$$2EndNote$$aJournal Article
001005788 520__ $$aElectricity prices in liberalized markets are determined by the supply and demand for electric power, which are in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load, i.e. the difference of load and renewable generation. Various market models are based on this principle when attempting to predict electricity prices, yet the principle is fraught with assumptions and simplifications and thus is limited in accurately predicting prices. In this article, we present an explainable machine learning model for the electricity prices on the German day-ahead market which foregoes of the aforementioned assumptions of the merit order principle. Our model is designed for an ex-post analysis of prices and builds on various external features. Using SHapley Additive exPlanation (SHAP) values we disentangle the role of the different features and quantify their importance from empiric data, and therein circumvent the limitations inherent to the merit order principle. We show that load, wind and solar generation are the central external features driving prices, as expected, wherein wind generation affects prices more than solar generation. Similarly, fuel prices also highly affect prices, and do so in a nontrivial manner. Moreover, large generation ramps are correlated with high prices due to the limited flexibility of nuclear and lignite plants. Overall, we offer a model that describes the influence of the main drivers of electricity prices in Germany, taking us a step beyond the limited merit order principle in explaining the drivers of electricity prices and their relation to each other.
001005788 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001005788 536__ $$0G:(DE-Ds200)HGF-ZT-I-0029$$aHGF-ZT-I-0029 - Helmholtz UQ: Uncertainty Quantification - from data to reliable knowledge (HGF-ZT-I-0029)$$cHGF-ZT-I-0029$$x1
001005788 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005788 7001_ $$0P:(DE-Juel1)173608$$aRydin Gorjão, Leonardo$$b1
001005788 7001_ $$0P:(DE-HGF)0$$aPraktiknjo, Aaron$$b2
001005788 7001_ $$0P:(DE-HGF)0$$aSchäfer, Benjamin$$b3
001005788 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b4$$ufzj
001005788 773__ $$0PERI:(DE-600)3017958-0$$a10.1016/j.egyai.2023.100250$$gVol. 13, p. 100250 -$$p100250 -$$tEnergy and AI$$v13$$x2666-5468$$y2023
001005788 8564_ $$uhttps://juser.fz-juelich.de/record/1005788/files/1-s2.0-S2666546823000228-main.pdf$$yOpenAccess
001005788 8767_ $$d2023-04-03$$eAPC$$jZahlung erfolgt
001005788 909CO $$ooai:juser.fz-juelich.de:1005788$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192442$$aForschungszentrum Jülich$$b0$$kFZJ
001005788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b4$$kFZJ
001005788 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001005788 9141_ $$y2023
001005788 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005788 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005788 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001005788 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001005788 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005788 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005788 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001005788 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001005788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001005788 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:55:10Z
001005788 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:55:10Z
001005788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:55:10Z
001005788 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
001005788 980__ $$ajournal
001005788 980__ $$aVDB
001005788 980__ $$aUNRESTRICTED
001005788 980__ $$aI:(DE-Juel1)IEK-STE-20101013
001005788 980__ $$aAPC
001005788 9801_ $$aAPC
001005788 9801_ $$aFullTexts