Home > Publications database > jumpdiff : A Python library for statistical inference of jump-diffusion processes in observational or experimental data sets > print |
001 | 1005789 | ||
005 | 20231027114359.0 | ||
024 | 7 | _ | |a 10.18637/jss.v105.i04 |2 doi |
024 | 7 | _ | |a 2128/34257 |2 Handle |
024 | 7 | _ | |a WOS:000923067600001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01634 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Gorjão, Leonardo Rydin |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a jumpdiff : A Python library for statistical inference of jump-diffusion processes in observational or experimental data sets |
260 | _ | _ | |a Los Angeles, Calif. |c 2023 |b UCLA, Dept. of Statistics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680609893_8433 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We introduce a Python library, called jumpdiff, which includes all necessary functions to assess jump-diffusion processes. This library includes functions which compute a set of non-parametric estimators of all contributions composing a jump-diffusion process, namely the drift, the diffusion, and the stochastic jump strengths. Having a set of measurements from a jump-diffusion process, jumpdiff is able to retrieve the evolution equation producing data series statistically equivalent to the series of measurements. The back-end calculations are based on second-order corrections of the conditional moments expressed from the series of Kramers-Moyal coefficients. Additionally, the library is also able to test if stochastic jump contributions are present in the dynamics underlying a set of measurements. Finally, we introduce a simple iterative method for deriving secondorder corrections of any Kramers-Moyal coefficient. |
536 | _ | _ | |a 1112 - Societally Feasible Transformation Pathways (POF4-111) |0 G:(DE-HGF)POF4-1112 |c POF4-111 |f POF IV |x 0 |
536 | _ | _ | |a HGF-ZT-I-0029 - Helmholtz UQ: Uncertainty Quantification - from data to reliable knowledge (HGF-ZT-I-0029) |0 G:(DE-Ds200)HGF-ZT-I-0029 |c HGF-ZT-I-0029 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Witthaut, Dirk |0 P:(DE-Juel1)162277 |b 1 |u fzj |
700 | 1 | _ | |a Lind, Pedro G. |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.18637/jss.v105.i04 |g Vol. 105, no. 4 |0 PERI:(DE-600)2010240-9 |n 4 |p 1 |t Journal of statistical software |v 105 |y 2023 |x 1548-7660 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1005789/files/v105i04-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1005789 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162277 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1112 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-06-15T08:01:00Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-06-15T08:01:00Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-06-15T08:01:00Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J STAT SOFTW : 2022 |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J STAT SOFTW : 2022 |d 2023-10-22 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-STE-20101013 |k IEK-STE |l Systemforschung und Technologische Entwicklung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-STE-20101013 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|