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Branching in flow networks with linear congestion
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In our modern world, we rely on the proper functioning of a variety of networks with complex dynamics. Many
of them are prone to congestion due to high loads, which determines their operation and resilience to failures.
In this article, we propose a fundamental model of congestion where travel times increase linearly with the load.
We show that this model interpolates between shortest path and Ohmic flow dynamics, which both have a broad
range of applications. We formulate the model as a quadratic programme and derive a generalization of Ohm’s
law, where the flow of every link is determined by a potential gradient in a nonlinear way. We provide analytic
solutions for fundamental network topologies that elucidate the transition from localized flow to a branched flow.
Furthermore, we discuss how to solve the model efficiently for large networks and investigate the resilience to
structural damages.
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I. INTRODUCTION

Modern societies rely on the proper functioning of various
networks to provide elementary goods such as water, commu-
nication, electricity, or mobility. The operation and resilience
of transportation networks thus plays an important role
throughout different disciplines, ranging from biological sys-
tems [1–3] to manmade networks, such as hydraulic networks
[4,5], power grids [6], and urban transportation systems [7,8].

Two models stand out in the analysis and simulation of
transportation networks. The shortest path problem describes
the flow of traffic in road or communication networks [9].
Each agent, car, or data package follows the shortest path from
its origin to its destination. Several variants or extensions of
this problem have been treated in the literature, including the
famous traveling salesman problem [10], being highly influen-
tial in the development of graph algorithms and optimization
methods (see, e.g, Refs. [11,12]). Ohm’s and Kirchhoff’s laws
describe electric currents in resistor networks [13], real power
flows in AC power grids [14] and water flow in hydraulic
networks [4,5] or vascular networks [1–3]. The flow is gen-
erally distributed over all possible links, albeit at a different
magnitude. The resilience of both types of networks has been
intensively studied in the literature, see, e.g., Refs. [15,16] for
shortest path networks and Refs. [17,18] for Ohmic networks.

In this article, we investigate a transportation network
model that interpolates between shortest path and Ohmic flow.
The model is inspired by traffic flow in the presence of conges-
tion and generalizes the fundamental shortest path problem.
As usual, the flow is determined to minimize the total travel
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time from a source to a target node. However, the travel time
of every individual link increases with the flow due to con-
gestion. The model is thus formulated as a convex quadratic
programme (QP), that is a mathematically well studied class
of optimization problems [19] which can be solved efficiently
[20]. Furthermore, we provide a solution in terms of a nodal
potential that generalizes Ohm’s law: The flow over an edge
is determined by the potential gradient, but the relation is no
longer linear.

The model provides fundamental insights into the proper-
ties of network flows, showing when and where the network
flow branches and how the network reacts to structural
damages. Furthermore, congestion is a central limitation of
real-world networks such as urban transport systems. These
networks are becoming increasingly important due to the
ongoing effort to reduce mobility-based carbon emissions to
mitigate climate change. Also, an increasing share of the
global population lives in cities which results in an rapidly
growing usage of public transport systems. This raises the
question how congestion impacts the performance and robust-
ness of networks [21–24].

This article is organized as follows. First, in Sec. II,
we formulate the linear congestion model and discuss
possibilities to reduce the complexity of the problem. Then,
in Secs. III and IV, we study the impact of congestion on
two fundamental flow phenomena: first, the branching of the
flow from one source to one sink and, second, the impact of
a single link failure and the rerouting flow that is induced by
this outage. We find that the flow locally behaves Ohmic up
to a range that is growing with the strength of congestion.
We present our conclusions in Sec. V and a more general
benchmark in the Appendix.

II. A LINEAR MODEL OF CONGESTION

We propose a model that adopts congestion by adding a
linear term to the flow cost function, which we denote by τ .
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The cost refers to the average travel time which the travelers
inside the system try to minimize. Therefore, the expressions
of cost and travel time are used synonymously throughout this
manuscript.

We first establish the model and the basic notation before
we discuss both the shortest path limit and the Ohmic limit.
Then, the formalism is generalized to finite congestion using
Karush–Kuhn–Tucker (KKT) conditions [19]. It turns out that
this method is not suitable to find explicit solutions for the
flows, but we can use a numerical solver by formulating
our problem as a QP. It is, however, numerically expensive
to solve a QP with high degrees of freedom. Therefore, we
introduce a method to reduce the numerical complexity of the
solution. We use the numerically accurate sparsity-oriented
QP solver (NASOQ) [20] to solve our QP which makes use of
the high sparsity in our system.

A. Formulation of the model

We consider a transportation network, consisting of a set
of N nodes which are connected by a set of L edges on which
travelers can move between nodes. We assume the network to
be directed, that means for an edge l which starts at node n and
ends at node m, denoted by (n, m) or l interchangeably, the
flow Fl along the edge can only go from n to m. This implies in
particular Fl � 0. If a flow between nodes n and m is possible
in both directions, then this is encoded via two links (n, m)
and (m, n).

We assume that the time τl which a traveler needs to travel
along an edge l increases linearly with the local flow Fl , i.e.,

τl (Fl ) = (1 + ηFl )tl , (1)

where tl is the travel time in case of vanishing flows, i.e.,
in absence of any congestion. We introduce the congestion
parameter η which is the inverse of the flow intensity which
doubles the travel time (i.e., which halfs the traveling veloc-
ity) along the link compared to the free-flow travel time tl .
Different edges might have different values of η. An example
would be the case of distinguished lines in a metro network.
In this case one would have edges that correspond to metro
tunnels as well as edges that model the transfer from one line
to another inside a station. These two types of edges might
be differently prone to congestion. But these more complex
scenarios are beyond the scope of this paper. Here, we assume
that η is equal for all edges.

Traffic flow is fundamentally different from the flow of
physical quantities such as water in a hydraulic network or
current in an electric network. In the latter case, we only have
to keep track of the net flow over a link or the net in- or outflow
at a node in the network. In the case of traffic networks, we
must take into account that travelers have individual starting
points and destinations and cannot be set off against each
other. Therefore, we restrict the analysis here to flows with
a single starting point or a single destination, respectively.
Travelers can enter or leave the network only at nodes, that
correspond to stations in case of a public transportation net-
work. We denote the inflow at node j by Pj , that is the number
of travelers entering the network at this node. Traveler leaving
the network are counted negatively.

Introducing the incidence matrix

Iil =
⎧⎨
⎩

+1, if l ends in i,
−1, if l starts in i,
0, else,

(2)

which encodes the topology and orientation of the edges l in
the network [25] allows us to write down the flow conserva-
tion law as ∑

l

Iil Fl = Pi, (3)

where Fl is the flow on edge l . The continuity equation (3)
is also referred to as Kirchhoff’s current law (KCL) in circuit
theory. The total travel time or cost τ reads

τ =
∑

l

τl (Fl )Fl =
∑

l

(
Fl + ηF 2

l

)
tl .

We demand that the flows should arrange in such a way that
they minimize τ under the boundary conditions imposed by
Eq. (3). Considering furthermore the directedness constrains
Fl � 0, the mathematical problem can be written as

min
Fl

∑
l

(
Fl + ηF 2

l

)
tl , (4a)

subject to
∑

l

IilFl = Pi, (4b)

Fl � 0. (4c)

The objective function is a quadratic polynomial in L variables
with N equality and L inequality constrains. Such a system is
called a QP [19]. In general, solving a QP is NP-hard [26]. But
if the objective function is convex, as it is the case in Eq. (4a),
the problem can be solved in polynomial time [27].

B. Relation to other congestion models

Before we proceed to the results of our analysis, we briefly
comment on the congestion model (1) and its correspon-
dence to empiric data and other models. The choice of this
equation follows two main motivations. First, it interpolates
between the two most fundamental models of transportation
and flow networks, the shortest-path and the Ohmic flow,
and thus allows for essential insights into the relation of the
two models. Second, the linear function in Eq. (1) can be
viewed as the leading term in a Taylor approximation to a
general function τl (Fl ). Hence our results can be viewed as
a generic first-order approximation to different types of con-
gestion flows. We briefly review some examples of such flows
below.

Road traffic is probably the most prominent example of
congested flows. Macroscopic and economic models of road
traffic often resort to the Bureau of Public Road functions
[23],

τl = tl + f (Fl ),

which are widely used in the literature [28,29]. The function
f describes congestion. It is monotonically increasing with
the flow Fl and satisfies f (0) = 0. Different function forms
are used in the literature, with a fourth order power law being
particularly popular.
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In microscopic and empiric studies, congestion effects are
typically analysed in terms of the vehicle density ρ. An
early empiric study by Greenshields suggested that the av-
erage velocity v decreases approximately linearly as v(ρ) ≈
v0 − aρ [30]. Greenberg introduced fluid mechanics to model
congested flows and obtained the expression v(ρ) = c ×
log(ρjam/ρ) for large densities, with parameters obtained from
fits to empiric data [31]. Helbing derived and validated a
model for congestion in multilane traffic, where the average
equilibrium velocity reads [32,33]

v(ρ) = v0 − ρ
τ (ρ)[1 − p(ρ)ξ (ρ)]

1 − ρ/ρmax − ρT v(ρ)
,

with ξ being the variance of car velocities, τ the relaxation
time of acceleration, p the probability of overtaking, and T
the reaction time of the drivers. Further developments have
been reviewed in Refs. [34,35].

We can relate these results to our approach by interpreting
the linear function (1) as a leading-order Taylor approxima-
tion. The travel time of a link of length L is given by τ =
L/v(ρ) and the flow is written as F = ρv(ρ). We then express
the derivative dτ/dF by dv/dρ, both evaluated in the limit of
vanishing traffic flow F, ρ → 0. The travel time then reads

τ (F ) = τ (0) +
[

dτ

dF

]
F=0

F + O(F 2)

= τ (0) − L

v3
0[dv/dρ]ρ=0

F + O(F 2). (5)

Public transportation networks also suffer from congestion,
which has received increasing attention in recent years [36].
As in the case of road traffic, congestion can lead to an in-
crease in (expected) travel times, for instance through denied
boarding or irregular vehicle arrivals [37]. Furthermore, the
travel time is not the only factor that determines the decision
for a certain route or mode of travel. The growing discom-
fort in overcrowded buses or trains substantially decreases
the travelers’ utility such that they may choose alternatives
[37,38]. These effects have been confirmed by several empiric
studies. However, the analysis is more involved as one has
to quantify the travelers’ behavior and not just the physical
travel times [39–41]. In terms of our model, these effects can
be taken to account by replacing the travel time (1) by a more
general effective cost function, without altering the mathe-
matical structure. Notably, the study [42] tries to quantify the
negative effect of crowding in terms of an equivalent increase
of travel times. In the data analysis the authors use a linear
model just as Eq. (1) in comparison to other functional forms.

Finally, effects of congestion are also investigated in bi-
ological flow networks. For instance, oxygen transport in
vertebrates show congestion in terms of hematocrit: The trans-
port flux first increases with the volume concentration before
it saturates and decreases again [43]. Similar relations of
flux and concentration are also found in different modes of
drinking [44]. An excellent review of different types of trans-
portation systems, including a comparison of biological and
traffic flows, is provided in Ref. [45].

C. Shortest path limit and Ohmic limit

In the limit η = 0, the quadratic terms in the objective
function vanish and we obtain a linear programme (LP) where
it remains to minimize τ (Fl ) = ∑

l tlFl . This setup is known
as the shortest path problem [9], we will therefore refer to this
limit as the shortest path limit. Shortest path problems can be
solved using Dijkstra’s algorithm [46].

In the limit η → ∞, the linear terms in the objective func-
tion vanish so that it remains to minimize τ (Fl ) = ∑

l tlF 2
l .

The objective function τ (Fl ) is in this limit identical to the
objective in Ohmic networks such as electrical power grids
[13, chap. IX, Theorem 1]. Using the notion of undirected
networks, the problem becomes particularly simple to solve:
In networks, where for each edge (n, m) the counter edge
(m, n) also exists with identical tnm = tmn, we can consider
each of these edge pairs as a single where flow can go in both
directions so that we can omit the inequality constrains (4c)
and obtain the following optimization problem:

min
Fl

∑
l

tlF
2

l , (6a)

subject to
∑

l

Iil Fl − Pi = 0. (6b)

This problem can be solved using the method of Lagrange
multipliers [47]: In this formalism, we introduce for each
constrain a Lagrange multiplier λi and define the Lagrangian

L = τ −
∑

i

λi

(∑
l

Iil Fl − Pi

)
.

For the optimal set of flows Fl , the Lagrangian L must be
stationary, i.e.,

∂FlL = ∂Fl τ −
∑

i

λiIil = 2tlFl −
∑

i

λiIil
!= 0.

We therefore get

Fl =
∑

i λiIil

2tl
= κl

∑
i

λiIil , (7)

with κl := (2tl )−1. Let us rewrite this relation in a slightly
different form. For a link l = (n, m) that connects two nodes
n and m, the flow reads

Fn→m = λn − λm

2tnm
. (8)

We thus recover Ohm’s law if we identify λn as the voltage at
node n and 2tnm as the resistance of the link (n, m). Thus, we
will henceforth refer to the limit η → ∞ as the Ohmic limit.

To determine the λi, we insert Eq. (7) into the boundary
conditions (6b). Using the properties of Iil we find∑

j

κi j (λi − λ j ) = Pi. (9)

Introducing the Laplacian matrix L ∈ Rn×n with elements

Li j = −κi j +
(∑

k

κik

)
δi j,
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this problem can be written as∑
j

Li jλ j = Pi, (10)

which can be solved by multiplying from the left with the
(pseudo)inverse matrix (L−1)i j :

λi =
∑

j

(L−1)i jPj . (11)

Finally, we obtain the flows Fl in the Ohmic limit by inserting
Eq. (11) into Eq. (7).

D. Generalization to finite congestion

The previous approach of solving the optimization prob-
lem in the limit η → ∞ via Lagrange multipliers can be
generalized to the case of finite η > 0 and directed networks
using the theorem of Karush-Kuhn-Tucker (KKT) [19, chap.
5.5.3] which generalizes the formalism of Lagrange multipli-
ers: Considering the optimization problem (4) for a network
with N nodes and L edges, we introduce the generalized
Lagrangian

L(Fl , λi, μl ) :=
∑

l

(
Fl + ηF 2

l

)
tl︸ ︷︷ ︸

≡ τ (Fl )

−
∑

i

λi

(∑
l

Iil Fl − Pi

)

−
∑

l

μlFl .

The KKT conditions then read

∂FlL = (1 + 2ηFl )tl −
∑

i

λiIil − μl = 0, (12a)

∑
l

Iil Fl − Pi = 0, (12b)

Fl � 0 ∀ l, (12c)

μl � 0 ∀ l, (12d)

μl Fl = 0 ∀ l, (12e)

with i = 1, . . . , N and l = 1, . . . , L. For the optimal flows Fl ,
the gradient of the Lagrangian L must vanish. Thus, solving
Eq. (12a) for Fl and considering the constraints (12c), we find

Fl =
{ 1

2ηtl

∑
i (λiIil + μl − tl ), if positive,

0, else.

Using Eq. (12e), we can omit μl as it has to be zero if Fl �= 0.
Hence, using the Heaviside function 
(x) we can write

Fl =
∑

i λiIil − tl
2ηtl




(∑
i λiIil − tl

2ηtl

)
.

Considering l =̂ (n, m), i.e., let edge l start at node n and end
at node m, using the definition of Iil in Eq. (2) and introducing
the matrix of capacities

κnm :=
{ 1

2ηtn→m
, if link (n, m) exists,

0, otherwise,
(13)

FIG. 1. The flow Fn→m along an edge from node n to node m in
dependence of the potential drop λn − λm in the Ohmic limit η = ∞
and for finite congestion η < ∞. For positive potential drop and η =
∞, the flow is directly proportional to λn − λm, for negative potential
drops it is zero. For finite congestion η, the curve is shifted to the
right.

this becomes

Fn→m =
[
κnm(λn − λm) − 1

2η

]



[
κnm(λn − λm) − 1

2η

]
.

(14)

Inserting Eq. (14) into Eq. (12b) yields

Pi =
∑

l

IilFl =
∑

j: ∃(i, j)

Fi→ j −
∑

j: ∃( j,i)

Fj→i

=
∑

j

[
κi j (λi − λ j ) − 1

2η

]



[
κi j (λi − λ j ) − 1

2η

]

−
∑

j

[
κ ji(λ j − λi) − 1

2η

]



[
κ ji(λ j − λi) − 1

2η

]
.

(15)

Note that we recover Eq. (9) for undirected networks, i.e.,
κi j = κ ji, in the Ohmic limit η → ∞ with κ−1

i j ∝ ηti→ j kept
finite.

Thus, also for finite congestion η < ∞, we can interpret
the λi as potentials like in the Ohmic limit. In Fig. 1, the flow
Fn→m along an edge from n to m is plotted over the potential
drop λn − λm over this edge. In the limit η → ∞, we find a
straight line, i.e., the flow is proportional to the potential drop
in the Ohmic limit. For finite congestion, η < ∞, we observe
a plateau for λn − λm < tn→m due to the Heaviside function in
Eq. (14). Thus, a finite free-flow travel time tn→m suppresses
the flow on the edge up to a critical value of the potential
drop λn − λm. In the limit tn→m → 0 the 1/2η term inside the
Heaviside function becomes negligible such that the argument
is always positive if the potential drop λn − λm is.

The formalism of Lagrange multipliers is very helpful to
get insights to study fundamental properties of the system.
However, the resulting equations (15) are nonlinear and even
nonanalytic in the potentials λi, which regularly causes prob-
lems for numerical solvers. Therefore, we use an algorithm
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FIG. 2. Sketch of a network with loops. Each loop adds a new
degree of freedom on how the flows can arrange that can be visual-
ized as cycle flows f c

1 which flow around each loop. Note that when
having two edges connecting the same nodes we get also for each of
these 2-loops a d.o.f. like f c

4 .

that directly solves the quadratic programme numerically to
obtain the optimal flows.

E. Reducing the numerical complexity using
an adapted Hardy Cross method

The optimization problem (4) can be solved directly using
a numerical QP solver. However, the solution becomes numer-
ically expensive for large systems as the runtime is polynomial
in the number of edges L of the system. To reduce the numer-
ical complexity, we can make use of Kirchhoff’s current law
which reduces the degrees of freedom of the system.

If the network is a tree, then the flows are fully determined
by flow conservation (4b). For each closed loop in the net-
work, a new degree of freedom arises for the arrangement of
flows so that they are not violating Kirchhoff’s current law. As
sketched in Fig. 2, we can consider these degrees of freedom
as cycle flows which are added to the initial flow on each
edge with parallel orientation on the loop and subtracted from
the flows on edges along the loop where the orientation is
antiparallel.

With these thoughts, we can partially solve the problem
using a method inspired by the Hardy Cross method [48],
which was originally developed to calculate flows in pipe
networks. The method involves the following steps:

(1) find an arbitrary set of flows Fl,0 which fulfils Kirch-
hoff’s current law (4b) at each node.

(2) add for each fundamental loop a cycle flow f c
i flowing

along the edges which form the loop. If the orientation of f c
i

and edge l are parallel, then f c
i is added to the Fl,0. When they

are antiparallel, it is subtracted.
(3) find the set of f c

i which minimizes τ and fulfils the
inequality boundary conditions Fl � 0.

To formalise this method, we introduce the cycle incidence
matrix Cli with the components

Cli =
⎧⎨
⎩

+1, if edge l is parallel to loop i,
−1, if edge l is antiparallel to loop i,
0, if edge l is not in loop i.

(16)

Using this definition, the resulting flows Fl ( f c
i ) after adding

the cycle flows f c
i to the initial guess Fl,0 read

Fl
(

f c
i

) = Fl,0 +
∑

i

Cli f c
i . (17)

The system can now be written as

min
f c
i

τ
[
Fl

(
f c
i

)]
,

subject to Fl
(

f c
i

) = Fl,0 +
∑

i

Cli f c
i � 0.

When we insert Eq. (17) into Eq. (4a), we find

τ
[
Fl

(
f c
i

)] = 1

2

∑
i, j

f c
i βi j f c

j +
∑

i

αi f c
i + τ (Fl,0), (18)

with the symmetric matrix

βi j = 2η
∑

l

tlCliCl j, (19)

the vector

αi =
∑

l

tl (1 + 2ηFl,0)Cli, (20)

and the constant expression τ (Fl,0) that does not depend on the
cycle flows f c

i and can therefore be omitted in the following
discussion.

We find the objective function to be again a quadratic
polynomial so that the remaining system is also a QP:

min
f c
i

1

2

∑
i, j

f c
i βi j f c

j +
∑

i

αi f c
i , (21a)

subject to Fl
(

f c
i

) = Fl,0 +
∑

i

Cli f c
i � 0. (21b)

While the initial QP was of order L with N equality and L
inequality constrains, the new QP is only of order nl with zero
equality and L inequality constrains where nl is the number of
loops in the network. Furthermore, the matrix βi j is hermitian
and positive-definite. Hence, the system (21) is again a convex
QP that can be solved in polynomial time.

Considering real-world networks like the Cologne tram
network [49], there are much fewer loops than number of
links, i.e., nl � L, if we consider each connection between
two stations as a link. Without considering different lines,
in the Cologne tram network we find 219 connections and
only 18 loops. In addition to these large loops we must also
consider that each connection in this network consists of two
edges—one for each direction. Thus, we get additional 219
loops consisting out of the antiparallel edges connecting the
same two nodes. In the end, this means that the original QP
is of order L = 438 while the reduced QP with the adapted
Hardy Cross method is only of order nl = 237, i.e., we can
almost half the degrees of freedom.
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F. Further reduction of complexity

In the example of the previous section, 219 of 237 degrees
of freedom in Eq. (21) are caused by the antiparallel edges
in the network. Thus, the large majority of the remaining de-
grees of freedom when using the adapted Hardy Cross method
originate in the fact that along all links in the network one can
go in both directions. However, when minimizing the average
travel time τ we know that the flow along one of these two
edges must be exactly zero as we could reduce τ otherwise
by adding an appropriate cycle flow along these two edges to
cancel out one of these flows.

Since we observe a large number of such bidirectional
connections between nodes in most transport networks, an
appropriate handling of these flows can further reduce the
number of free parameters that need to be solved for. In the
example of the Cologne tram network, only 18 degrees of
freedom would remain.

The crucial point when solving a convex QP is to find the
active set of inequalities (21b). In our system, that corresponds
to the flows Fl that are exactly zero. We know that in the case
of two antiparallel edges, at least on one of them, the flow
must vanish. Using this knowledge would therefore tremen-
dously reduce the complexity of finding the correct active set.

III. BRANCHING OF NETWORK FLOWS

For shortest path limit η = 0, the flow between two nodes
in the network flows along a single path if it is unique. In the
Ohmic limit η → ∞, however, the flow always spreads over
all paths from the source to the sink. This raises the question,
how does the transition take place when driving the congestion
parameter η? When and how does the flow branch?

In this section, we discuss the branching of the flow on
a regular lattice and on a irregular, real network topology.
For the fundamental 2 × 3 square lattice, we derive analytic
expressions for the optimal flows in dependence of the con-
gestion parameter η, while we rely on a QP solver to solve
Eq. (4) numerically for general network topologies.

A. A fundamental example of branching

We first discuss a fundamental network topology to study
the impact of congestion on the optimal flow pattern. We
choose a system that is symmetric and has only two effective
degrees of freedom and thus allows for an analytic solution.
Consider a 2×3 square lattice with identical edges and a
source-sink pair of strength P in the center of the lattice as
sketched in Fig. 3(a). Numbering the nodes consecutively
from top left to bottom right, Kirchhoff’s current law (4b)
reads

F3→1 = F1→2 = F2→4,

F3→5 = F5→6 = F6→4,

F3→1 + F3→4 + F3→5 = P.

Due to the mirror symmetry of the system, the flow along the
upper and lower branch must be equal. Thus, we have only
two effective degrees of freedom,

F2 := F3→1 = F1→2 = F2→4 = F3→5 = F5→6 = F6→4,

F1 := F3→4,

(a) (b)

FIG. 3. Optimal flow on a 2 × 3 square lattice in presence of
congestion. (a) We consider the case of a source (blue) and a sink
(red) with an inflow and outflow of P, respectively. We can split
the flow due to symmetry into two components F1, which takes the
direct link, and F2, which takes the upper and lower branch. (b) The
optimization problem (21) can be solved directly and we find analytic
expressions for both flow components as a function of the congestion
parameter η. Below a critical value of ηc = 1/P, the flow on the
longer branches (F2) is exactly zero.

that must satisfy the condition

F1 + 2F2 = P. (22)

Furthermore, both F1 and F2 must be nonnegative as there
would be a flow from the sink back to the source otherwise.
This yields F1, F2 ∈ [0, P]. Using these restrictions, we can
directly solve Eq. (4a) by imposing Eq. (22) and find the
optimal flow

F 

2 (η) =

{
0, η < 1/P,
P−1/η

5 , η � 1/P,
(23)

that minimizes the total travel time. The optimal flow F 

1 on

the direct link is obtained by plugging Eq. (23) into Eq. (22).
Note, that this result can be written independently of the
source strength P when rescaling η → ηP and writing the
flow in units of P, Fi → Fi/P. In Fig. 3(b), the optimal flows
F 


1 and F 

2 are plotted over the strength of congestion η.

We find that the long branches only carry flow for η > 1/P
so that we can define the critical value of the congestion
parameter ηc = 1/P, below which we observe a flow only on
the shortest path while above this value, the flow splits up on
more branches. That is, branching becomes favourable only if
η > ηc. We thus find a pure shortest path flow also for weakly
congested flows.

In the Ohmic limit η → ∞, the flows smoothly converge
to F 


2 = 0.2P and F 

1 = 0.6P.

In the Appendix, we conduct in more details the cal-
culations for the optimal flow in a 2-node network with
two concurrent branches with different ratios of the branch
weights. We find that the critical value of the congestion
parameter ηc in general grows linearly with the weight ratio
t as

ηc(t ) = t − 1

2

1

P
. (24)

Note, that the result from Eq. (23) is recovered when inserting
the ratio of the path weights on the square grid, that is t = 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Branching in dependence of congestion. For both a regular square lattice (a)–(d) and the irregular topology of the Paris metro
network (e)–(h), we find an increasingly complex flow pattern with growing strength of congestion η. In the shortest path limit η = 0, all the
flow only takes the shortest path (a), (e) while in the Ohmic limit for very strong η, all available paths are affected by the flow (d), (h).

B. Branching on large networks

In the previous section, we found that the flow is branching
for η larger than a critical ηc that depends on the network
geometry. We now study the impact of congestion on the flow
pattern on larger networks for which it is not feasible anymore
to solve Eq. (4) by hand. In particular, we consider the branch-
ing of flow between a single source-sink pair of unit strength
P = 1 both on a square grid and in a real network topology,
namely the Paris metro network. The effective “crowding
costs” in the Paris metro system have been analysed in socioe-
conomic experiments, in particular for the heavily loaded lines
1 and 4 [50]. These experiments aim to quantify the impact of
congestion on the travelers’ preferences for a certain route or
mode of transport—for instance via an equivalent increase of
travel times [42].

On the square grid, we assume the source and sink to the lo-
cated vertically centered and horizontally at the opposite ends
of the grid. In Figs. 4(a)–4(d), the optimal flow pattern on a
10 × 11 grid is visualized for different strengths of congestion
η.

We finds that in the limit of no congestion, η = 0
[Fig. 4(a)], all the flow is only taking the shortest path from the
source to the sink, as expected. When increasing the strength
of congestion η, we observe that the flow expands to more and
more alternative paths until it fills all links in the η → ∞ limit
[Fig. 4(d)].

The flow patterns for the same values of η is shown in
Figs. 4(e)–4(h) in the Paris metro network where all travelers
enter the metro at Gare Montparnasse and leave the network at
Gare du Nord. Again, with increasing η, the flow spreads over
more and more alternative routes: In the shortest path limit
η = 0, all travelers take the direct connection (which corre-
sponds to the metro line 4). In the presence of congestion,
alternative routes such as the lines 5 or 13 for η = 1 and in

addition the ring lines 2 and 6 for η = 5 become involved. In
the extreme case η = 1000, almost all paths connecting the
starting point and the destination are used by the flow. Note
that in this simple model we neglected the time loss when
changing from one metro line to another.

The simulation results suggest that, in periods of strong
congestion, some travelers avoid the overcrowded lines
through the city center and rather take a detour via the pe-
riphery. Hence, spatial traffic patterns should change during
the day, with traffic in the periphery increasing more than pro-
portional during rush hour. However, it remains highly chal-
lenging to confirm this hypothesis in practice for two reasons:
First, high-resolution data on public transport utilization is
generally sparse. Second, route choices are affected by a vari-
ety of features impeding any causal interpretation. In the case
of car traffic, some statistical results on spatiotemporal traffic
patterns are available (see Ref. [51] and references therein).

To further quantify the branching, we return to the square
grid and study the flow profile along the axis perpendicular
to the main flow direction, along the dashed vertical line in
Figs. 4(a)–4(d). In Fig. 5(a), The flows are plotted over the
distance d to the shortest path in the center of the lattice for
different values of η on a 10 × 51 square lattice.

We find that the flows close to the shortest path converge
very fast with increasing η and roughly scales with F (d ) ∝
1.4−|d|. For each value of η, we find a sharp cutoff range r
beyond which the flow is exactly zero. In Fig. 5(b), the cutoff
range for the 10 × 51 lattice is plotted over the congestion
parameter η. We find an approximate scaling of r(η) ∝ η1/4.

IV. SUSCEPTANCE TO LINK FAILURE

In network science, the stability and resilience against
damages is an important issue and intensively studied for
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(a) (b)

FIG. 5. Branching profile on a 10 × 51 lattice. (a) The flow F
perpendicular to the main flow direction in the center of the lattice,
as marked in Figs. 4(a)–4(d), over the distance d from the shortest
path for different strengths of congestion η. For a distance d larger
than the cutoff range r, all flows are exactly zero. In (b) the cutoff
range is plotted over η.

various types of networks [6,17,18,52]. There are different
types of damages that can occur. They might cause a reduc-
tions in capacity up to the complete failure of one or multiple
links. In this paper, we focus on the complete failure of a
single link that is realised by removing the failing link from
the network. In transport networks, these outages frequently
occur due to accidents, tempests or technical defects. When
planning a transport network, it is therefore important to study
the rerouting pattern, that is the difference in the flow caused
by the removal of a link, to spot critical links that might dra-
matically impact certain network areas in case of an outage.

We discuss the rerouting flows again on a square lattice,
where a source-sink pair is located next to each other in the
center of the grid as shown in Fig. 6. The rerouting flow �Fl

on an edge l is the difference between the flow in the full
lattice F full

l and the flow after the outage F out
l :

�Fl := F out
l − F full

l . (25)

Hence, �Fl is a measure how strong edge l is affected by this
outage. In Fig. 6, the flow pattern are visualized for η = 10
and for both the full lattice [Fig. 6(a)] and the lattice after
the outage of the central link [Fig. 6(b)]. In Fig. 6(c), the
corresponding rerouting flow �Fl is shown.

We notice that as a consequence of the outage of the central
link, the range of edges, which are affected by the flow, can
grow. In the case of η = 10, we find that after the outage,
one additional shell around the center is affected by the flow.
Hence, we can conclude that the failure of the link may extend
the range of flow. Considering a network with multiple flows
between different source-sink pairs, this can evoke interfer-
ence between different flow layers in case of a link failure
even if the flows do not cross each other when the network is
fully functional.

To quantify the impact of the strength of congestion η on
the rerouting flow, we again consider the parallel flow profile
over the distance d to the failing link as highlighted by the
dashed line in Fig. 6(c).

We find the rerouting flow �Fl in distance d to the fail-
ing link to decrease with d−2 as shown in Fig. 7(a), until
it approaches a cutoff distance r beyond which the �Fl are
exactly zero. A similar investigation for electrical power grids,

(a)

(c)

(b)

FIG. 6. Rerouting flow in case of a link failure. The impact of a
single link failure on the network is studied on a square lattice with
the source-sink pair laying on neighboring nodes in the center of the
lattice. This scenario is illustrated for η = 10: (a) the optimal flow
in the full lattice, (b) the optimal flow with the link failure, i.e., after
removing the central link that directly connects source and sink. (c)
the rerouting flow, i.e., the difference between the flow after the link
failure and the flow in the full lattice. To discuss the rerouting flow
pattern, we consider the flow differences on the edges in parallel to
the failing link, marked by the dashed line in c

(a) (b)

FIG. 7. Profile of the rerouting flow in presence of congestion.
(a) The strength of the rerouting flow �Fl decreases as a power law
d−2 with the distance d from the failing link up to a sharp cutoff
distance r, beyond which the rerouting flow is exactly zero. (b) The
cutoff range r, i.e., the distance of the last link that still carry any
flow from the failing link, grows with

√
η.
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that correspond to the η → ∞ in our case, revealed also a
�Fl ∝ d−2 scaling [17]. We can therefore conclude that in this
linear congestion model, the optimal flow locally looks similar
to the Ohmic flow for distances d < r while it is exactly zero
for d > r.

In Fig. 7(b), we plotted this flow range r for various η and
found a very accurate r ∝ √

η scaling. This scaling law can
be explained using the Lagrange multiplier λn, that define a
potential for each node n. In Eq. (14), we found the flow Fn→m

from n to m can be written as

Fn→m =
[
κnm�λnm − 1

2η

]



(
κnm�λnm − 1

2η

)
in terms of the potential drop �λnm := λn − λm. Below the
critical potential drop �λC

nm = κnm/2η ∝ η−1, the flow is ex-
actly zero.

Although we cannot determine the potentials λn directly,
we know the potential drop scales with �λnm ∝ Fn→m ∝ d−2

for �λnm > �λC
nm. The cutoff distance r is reached when

�λnm(r) = �λC
nm ∝ η−1. We therefore get r−2 ∝ η−1 which

is equivalent to r ∝ √
η. Thus, the cutoff distance r must grow

with the square root of the congestion parameter
√

η.

V. CONCLUSION

Transportation networks are increasingly prone to conges-
tion. In this paper, we proposed a fundamental model that
implements congestion as a linear increase in the time needed
to travel along an edge caused by the local flow.

Mathematically seen, this model interpolates between ordi-
nary shortest-path flows in case of no congestion and Ohmic
flows, as in electrical power grids, in the limit of strong
congestion. We note, however, that the analogy to the flows
in electrical power grids only holds as long as we restrict
to a single start or destination. In real transport networks,
we frequently observe a large number of intersecting flows.
In electrical power grids, these flows can be counted up and
Kirchhoff’s law only must hold for the overall flow. However,
in a transportation network, we must ensure that Kirchhoff’s
current law is fulfilled for every single flow to ensure all
travelers reach their individual destination.

We found that the minimal strength of congestion at which
branching becomes favourable grows linearly with the weight
ratio of the second shortest and the shortest path. As the
strength of congestion is increasing, the flow is branching
over more and more available paths until it affects the entire
network in the limit of strong congestion. On the square grid,
we found that the range of affected paths is growing with the
fourth square-root of the congestion parameter leading to a
strong increase of the range in the weak congestion regime.
In the future, it would be interesting to study the topology
of optimal network designs or optimal network extensions to
relive the impact of congestion.

In our everyday life, networks are often prone to unfore-
seeable damages that might lead to the complete failure of
a link in the network. To ensure the resilience of a network
against damages, the impact of such an outage needs to be
investigated. In this paper, we therefore studied the rerouting
flow caused by the outage of a single line on a regular lat-
tice. We found that the rerouting flow for finite congestion

(a) (b)

FIG. 8. Optimal flow in a network with congestion and two con-
current branches. Considering the case of a source (blue) and a sink
(red) with an inflow and outflow of P, respectively.

is locally similar to the rerouting flow in Ohmic networks
and decays with a inverse-square law over the distance to
the failing link. At a distance growing with the square root
of the congestion strength, we observe a sharp cutoff beyond
which the flow is exactly zero, which can be explained using
Lagrange multipliers, although we could not determine these
multipliers explicitly. Using this local similarity, we can profit
from the extensive amount of research done for Ohmic flow
networks, such as electrical power grids, to study strongly
congested flow networks.

APPENDIX: MORE GENERAL BENCHMARK

In this Appendix, we derive a general solution for the
flows in a network with two concurrent branches as sketched
in Fig. 8(a). We discuss the solution in dependence of the
free-flow travel time ratio t = t2/t1 of the two branches and
the congestion parameter η. In the following, we assume t > 1
w.l.o.g.

Denoting the inflow at the source with P, Kirchhoff’s cur-
rent law yields

F1 + F2 = P ⇒ F1 = P − F2.

Using t := t2/t1, the total travel time τ reads

τ = t1
(
F1 + ηF 2

1

) + t2
(
F2 + ηF 2

2

)
= t1

[
P − F2 + η

(
P2 − 2PF2 + F 2

2

) + t
(
F2 + ηF 2

2

)]
= t1

[
η(1 + t )F 2

2 − (1 + 2Pη − t )F2 + P + ηP2
]
.

For the optimal flow F 

2 , the derivative of τ vanishes:

∂F2τ (F 

2 ) = t1[2η(1 + t )F 


2 − (1 + 2Pη − t )]
!= 0.

Hence,

F 

2 = 2Pη + 1 − t

2η(1 + t )
= 2η̃ + 1 − t

2η̃(1 + t )
P,

with the rescaled congestion parameter η̃ := Pη. Considering
the directedness constraint, F2 � 0, we finally get

F 

2 (η̃, t ) =

{ 2η̃+1−t
2η̃(1+t ) P, η̃ > t−1

2 ,

0, else.
(A1)

The optimal flow F 

2 thus depends both on the ratio t of the

free-flow weight of both branches and the rescaled congestion
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parameter η̃ = ηP. The critical congestion strength is

η̃c = ηcP = t − 1

2
. (A2)

Hence, the minimal congestion needed to activate a branch
which has t times the weight of the shortest path increases
linearly with t . In Fig. 8(b), F 


2 is plotted over η̃ = ηP for
different values of t . When passing the critical value of con-
gestion η̃c, the flow on the longer branch quickly increases
at first and then slowly saturates towards F 


2 = P/(1 + t ) as
η̃ → ∞.
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[2] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, Damage and
Fluctuations Induce Loops in Optimal Transport Networks,
Phys. Rev. Lett. 104, 048704 (2010).

[3] D. P. Bebber, J. Hynes, P. R. Darrah, L. Boddy, and M. D.
Fricker, Biological solutions to transport network design, Proc.
R. Soc. London B 274, 2307 (2007).

[4] A. Yazdani and P. Jeffrey, Complex network analysis of water
distribution systems, Chaos 21, 016111 (2011).

[5] G. Eiger, U. Shamir, and A. Ben-Tal, Optimal design of
water distribution networks, Water Resour. Res. 30, 2637
(1994).

[6] F. Kaiser, H. Ronellenfitsch, and D. Witthaut, Discontinuous
transition to loop formation in optimal supply networks, Nat.
Commun. 11, 5796 (2020).

[7] M. T. Gastner and M. E. J. Newman, Optimal design
of spatial distribution networks, Phys. Rev. E 74, 016117
(2006).

[8] M. Barthélemy and A. Flammini, Optimal traffic networks, J.
Stat. Mech.: Theory Exp. (2006) L07002.

[9] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows
(Prentice Hall, Upper Saddle River, NJ, 1993)

[10] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-
scale traveling-salesman problem, J. Oper. Res. Soc. Am. 2, 393
(1954).

[11] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B.Shmoys,
The Traveling Salesman Problem: A Guided Tour of Combina-
torial Optimization (John Wiley & Sons, Hoboken, NJ, 1985).

[12] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, Faster al-
gorithms for the shortest path problem, J. ACM 37, 213 (1990).

[13] B. Bollobás, Modern Graph Theory, Graduate texts in mathe-
matics, No. 184 (Springer, New York, NY, 1998).

[14] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Gener-
ation, Operation and Control (John Wiley & Sons, New York,
NY, 2014).

[15] A. E. Motter and Y.-C. Lai, Cascade-based attacks on complex
networks, Phys. Rev. E 66, 065102(R) (2002).

[16] P. Crucitti, V. Latora, and M. Marchiori, Model for cascading
failures in complex networks, Phys. Rev. E 69, 045104(R)
(2004).

[17] J. Strake, F. Kaiser, F. Basiri, H. Ronellenfitsch, and D.
Witthaut, Nonlocal impact of link failures in linear flow net-
works, New J. Phys. 21, 053009 (2019).

[18] F. Kaiser, J. Strake, and D. Witthaut, Collective effects of
link failures in linear flow networks, New J. Phys. 22, 013053
(2020).

[19] S. Boyd and L. Vandenberghe, Convex Optimization (Cam-
bridge University Press, New York, NY, 2004).

[20] K. Cheshmi, D. M. Kaufman, S. Kamil, and M. M. Dehnavi,
NASOQ: Numerically accurate sparsity-oriented QP solver,
ACM Trans. Graph. 39 (2020).

[21] K. Nagel and M. Schreckenberg, A cellular automaton
model for freeway traffic, J. Phys. I (France) 2, 2221
(1992).

[22] W. Klingsch, C. Rogsch, A. Schadschneider, and M.
Schreckenberg, Pedestrian and Evacuation Dynamics 2008
(Springer, Berlin, 2010).

[23] United States. Bureau of Public Roads, Traffic assignment
manual for application with a large, high speed computer,
Vol. 2 (U.S. Department of Commerce, Washington, D.C.,
1964).

[24] R. Louf and M. Barthelemy, How congestion shapes cities:
From mobility patterns to scaling, Sci. Rep. 4, 5561 (2014).

[25] M. Newman, Networks: An Introduction (Oxford University
Press, Oxford, UK, 2010).

[26] P. M. Pardalos and S. A. Vavasis, Quadratic programming with
one negative eigenvalue is np-hard, J. Global Optim. 1, 15
(1991).

[27] M. Kozlov, S. Tarasov, and L. Khachiyan, The polynomial
solvability of convex quadratic programming, USSR Comput.
Math. Math. Phys. 20, 223 (1980).

[28] A. Nagurney and Q. Qiang, Robustness of transportation net-
works subject to degradable links, Europhys. Lett. 80, 68001
(2007).

[29] Y. Sheffi, Urban Transportation Networks, Vol. 6 (Prentice-
Hall, Englewood Cliffs, NJ, 1985).

[30] B. D. Greenshields, Studying traffic capacity by new methods,
J. Appl. Psych. 20, 353 (1936).

[31] H. Greenberg, An analysis of traffic flow, Oper. Res. 7, 79
(1959).

[32] D. Helbing, Derivation and empirical validation of
a refined traffic flow model, Physica A 233, 253
(1996).

[33] D. Helbing, Fundamentals of traffic flow, Phys. Rev. E 55, 3735
(1997).

[34] D. Helbing, Traffic and related self-driven many-
particle systems, Rev. Mod. Phys. 73, 1067
(2001).

[35] A. Schadschneider, Traffic flow: a statistical physics point of
view, Physica A 313, 153 (2002).

[36] R. Prud’homme, M. Koning, L. Lenormand, and A. Fehr, Pub-
lic transport congestion costs: The case of the paris subway,
Transport Policy 21, 101 (2012).

[37] O. Cats, J. West, and J. Eliasson, A dynamic stochas-
tic model for evaluating congestion and crowding effects
in transit systems, Transport. Res. B: Methodol. 89, 43
(2016).

043208-10

https://doi.org/10.1103/PhysRevLett.104.048703
https://doi.org/10.1103/PhysRevLett.104.048704
https://doi.org/10.1098/rspb.2007.0459
https://doi.org/10.1063/1.3540339
https://doi.org/10.1029/94WR00623
https://doi.org/10.1038/s41467-020-19567-2
https://doi.org/10.1103/PhysRevE.74.016117
https://doi.org/10.1088/1742-5468/2006/07/L07002
https://doi.org/10.1145/77600.77615
https://doi.org/10.1103/PhysRevE.66.065102
https://doi.org/10.1103/PhysRevE.69.045104
https://doi.org/10.1088/1367-2630/ab13ba
https://doi.org/10.1088/1367-2630/ab6793
https://doi.org/10.1145/3386569.3392486
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1038/srep05561
https://doi.org/10.1007/BF00120662
https://doi.org/10.1016/0041-5553(80)90098-1
https://doi.org/10.1209/0295-5075/80/68001
https://doi.org/10.1037/h0063672
https://doi.org/10.1287/opre.7.1.79
https://doi.org/10.1016/S0378-4371(96)00228-2
https://doi.org/10.1103/PhysRevE.55.3735
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1016/S0378-4371(02)01036-1
https://doi.org/10.1016/j.tranpol.2011.11.002
https://doi.org/10.1016/j.trb.2016.04.001


BRANCHING IN FLOW NETWORKS WITH LINEAR … PHYSICAL REVIEW RESEARCH 4, 043208 (2022)

[38] A. De Palma, M. Kilani, and S. Proost, Discomfort in mass
transit and its implication for scheduling and pricing, Transport.
Res. B: Methodol. 71, 1 (2015).

[39] L. Haywood and M. Koning, The distribution of crowding costs
in public transport: New evidence from paris, Transport. Res.
A: Policy Pract. 77, 182 (2015).

[40] L. Haywood, M. Koning, and R. Prud’Homme, The eco-
nomic cost of subway congestion: Estimates from paris, Econ.
Transport. 14, 1 (2018).

[41] M. Yap, O. Cats, and B. van Arem, Crowding valuation in urban
tram and bus transportation based on smart card data, Transport.
A: Transport Sci. 16, 23 (2020).

[42] M. de Lapparent and M. Koning, Analyzing time sensitivity
to discomfort in the paris subway: An interval data model ap-
proach, Transportation 43, 913 (2016).

[43] H. Stark and S. Schuster, Comparison of various approaches
to calculating the optimal hematocrit in vertebrates, J. Appl.
Physiol. 113, 355 (2012).

[44] W. Kim and J. W. Bush, Natural drinking strategies, J. Fluid
Mech. 705, 7 (2012).

[45] K. H. Jensen, W. Kim, N. M. Holbrook, and J. W. Bush, Optimal
concentrations in transport systems, J. R. Soc., Interface 10,
20130138 (2013).

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (MIT Press, Cambridge, MA, 2022).

[47] D. P. Bertsekas, Constrained Optimization and Lagrange Mul-
tiplier Methods (Academic Press, New York, NY, 1982).

[48] H. Cross, Analysis of flow in networks of conduits or conduc-
tors, Eng. Exper. Stat. Bull. 286 (1936).

[49] KVB, Bahnen-Schienennetz, https://www.kvb.koeln/fahrtinfo/
liniennetzplaene.html#lightbox/0/ (2020).

[50] L. Haywood and M. Koning, Estimating crowding costs in
public transport, DIW Berlin Discussion Paper, https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=2256332 (2013).

[51] A. Ermagun, S. Chatterjee, and D. Levinson, Using temporal
detrending to observe the spatial correlation of traffic, PLoS
One 12, e0176853 (2017).

[52] F. Kaiser, V. Latora, and D. Witthaut, Network isolators inhibit
failure spreading in complex networks, Nat. Commun. 12, 3143
(2021).

043208-11

https://doi.org/10.1016/j.trb.2014.10.001
https://doi.org/10.1016/j.tra.2015.04.005
https://doi.org/10.1016/j.ecotra.2017.10.001
https://doi.org/10.1080/23249935.2018.1537319
https://doi.org/10.1007/s11116-015-9629-7
https://doi.org/10.1152/japplphysiol.00369.2012
https://doi.org/10.1017/jfm.2012.122
https://doi.org/10.1098/rsif.2013.0138
https://hdl.handle.net/2142/4433
https://www.kvb.koeln/fahrtinfo/liniennetzplaene.html#lightbox/0/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2256332
https://doi.org/10.1371/journal.pone.0176853
https://doi.org/10.1038/s41467-021-23292-9

