001005793 001__ 1005793
001005793 005__ 20230929112521.0
001005793 0247_ $$2doi$$a10.1021/acsaelm.2c01428
001005793 0247_ $$2Handle$$a2128/34229
001005793 0247_ $$2WOS$$aWOS:000945886700001
001005793 037__ $$aFZJ-2023-01638
001005793 082__ $$a620
001005793 1001_ $$0P:(DE-HGF)0$$aJha, Neha$$b0$$eCorresponding author
001005793 245__ $$aInterface-Assisted Room-Temperature Magnetoresistance in Cu-Phenalenyl-Based Magnetic Tunnel Junctions
001005793 260__ $$aWashington, DC$$bACS Publications$$c2023
001005793 3367_ $$2DRIVER$$aarticle
001005793 3367_ $$2DataCite$$aOutput Types/Journal article
001005793 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680251940_31395
001005793 3367_ $$2BibTeX$$aARTICLE
001005793 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005793 3367_ $$00$$2EndNote$$aJournal Article
001005793 520__ $$aDelocalized carbon-based radical species with unpaired spin, such as the phenalenyl (PLY) radical, have opened avenues for developing multifunctional organic spintronic devices. Using direct laser writing and in situ deposition, we successfully fabricated Cu-PLY- and Zn-PLY-based organic magnetic tunnel junctions (OMTJs) with improved morphology and a reduced junction area of 3 × 8 μm2. The nonlinear and weakly temperature-dependent current–voltage (I–V) characteristics in combination with the low organic barrier height suggest tunneling as the dominant transport mechanism in the structurally and dimensionally optimized OMTJs. Cu-PLY-based OMTJs show significant magnetoresistance up to 14% at room temperature due to the formation of hybrid states at the metal–molecule interfaces called “spinterface”, which reveals the importance of spin-dependent interfacial modification in OMTJs’ design. Additionally, at high bias, in the absence of a magnetic field, OMTJ shows stable voltage-driven resistive switching. Cu-PLY having spin 1/2 with net magnetic moment demonstrates magnetic hardening between the surface molecule at the Co interface and gives rise to stable MR, which suggests its use as a feasible and scalable platform for building molecular-scale quantum memristors and processors.
001005793 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001005793 588__ $$aDataset connected to DataCite
001005793 7001_ $$0P:(DE-HGF)0$$aPariyar, Anand$$b1
001005793 7001_ $$0P:(DE-HGF)0$$aParvini, Tahereh Sadat$$b2
001005793 7001_ $$0P:(DE-HGF)0$$aDenker, Christian$$b3
001005793 7001_ $$0P:(DE-HGF)0$$aVardhanapu, Pavan K.$$b4
001005793 7001_ $$0P:(DE-HGF)0$$aVijaykumar, Gonela$$b5
001005793 7001_ $$0P:(DE-HGF)0$$aAhrens, Arne$$b6
001005793 7001_ $$0P:(DE-HGF)0$$aMeyer, Tobias$$b7
001005793 7001_ $$0P:(DE-HGF)0$$aSeibt, Michael$$b8
001005793 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b9$$eCorresponding author$$ufzj
001005793 7001_ $$0P:(DE-HGF)0$$aMoodera, Jagadeesh S.$$b10
001005793 7001_ $$0P:(DE-HGF)0$$aMandal, Swadhin K.$$b11
001005793 7001_ $$0P:(DE-HGF)0$$aMünzenberg, Markus$$b12
001005793 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.2c01428$$gVol. 5, no. 3, p. 1471 - 1477$$n3$$p1471 - 1477$$tACS applied electronic materials$$v5$$x2637-6113$$y2023
001005793 8564_ $$uhttps://juser.fz-juelich.de/record/1005793/files/Manuscript.pdf$$yPublished on 2023-03-06. Available in OpenAccess from 2024-03-06.
001005793 8564_ $$uhttps://juser.fz-juelich.de/record/1005793/files/acsaelm.2c01428-1.pdf$$yRestricted
001005793 909CO $$ooai:juser.fz-juelich.de:1005793$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany$$b0
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, School of Physical Sciences, Sikkim University, Tadong, Gangtok 737102, India$$b1
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany$$b2
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany$$b3
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India$$b4
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India$$b5
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany$$b6
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany$$b7
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany$$b8
001005793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b9$$kFZJ
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States$$b10
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India$$b11
001005793 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany$$b12
001005793 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001005793 9141_ $$y2023
001005793 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
001005793 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001005793 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
001005793 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ELECTRON MA : 2022$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001005793 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001005793 920__ $$lyes
001005793 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001005793 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001005793 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001005793 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
001005793 980__ $$ajournal
001005793 980__ $$aVDB
001005793 980__ $$aUNRESTRICTED
001005793 980__ $$aI:(DE-Juel1)IAS-1-20090406
001005793 980__ $$aI:(DE-Juel1)PGI-1-20110106
001005793 980__ $$aI:(DE-82)080009_20140620
001005793 980__ $$aI:(DE-82)080012_20140620
001005793 9801_ $$aFullTexts