Home > Publications database > Interface-Assisted Room-Temperature Magnetoresistance in Cu-Phenalenyl-Based Magnetic Tunnel Junctions > print |
001 | 1005793 | ||
005 | 20230929112521.0 | ||
024 | 7 | _ | |a 10.1021/acsaelm.2c01428 |2 doi |
024 | 7 | _ | |a 2128/34229 |2 Handle |
024 | 7 | _ | |a WOS:000945886700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01638 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Jha, Neha |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Interface-Assisted Room-Temperature Magnetoresistance in Cu-Phenalenyl-Based Magnetic Tunnel Junctions |
260 | _ | _ | |a Washington, DC |c 2023 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680251940_31395 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Delocalized carbon-based radical species with unpaired spin, such as the phenalenyl (PLY) radical, have opened avenues for developing multifunctional organic spintronic devices. Using direct laser writing and in situ deposition, we successfully fabricated Cu-PLY- and Zn-PLY-based organic magnetic tunnel junctions (OMTJs) with improved morphology and a reduced junction area of 3 × 8 μm2. The nonlinear and weakly temperature-dependent current–voltage (I–V) characteristics in combination with the low organic barrier height suggest tunneling as the dominant transport mechanism in the structurally and dimensionally optimized OMTJs. Cu-PLY-based OMTJs show significant magnetoresistance up to 14% at room temperature due to the formation of hybrid states at the metal–molecule interfaces called “spinterface”, which reveals the importance of spin-dependent interfacial modification in OMTJs’ design. Additionally, at high bias, in the absence of a magnetic field, OMTJ shows stable voltage-driven resistive switching. Cu-PLY having spin 1/2 with net magnetic moment demonstrates magnetic hardening between the surface molecule at the Co interface and gives rise to stable MR, which suggests its use as a feasible and scalable platform for building molecular-scale quantum memristors and processors. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Pariyar, Anand |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Parvini, Tahereh Sadat |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Denker, Christian |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Vardhanapu, Pavan K. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Vijaykumar, Gonela |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ahrens, Arne |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Meyer, Tobias |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Seibt, Michael |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 9 |e Corresponding author |u fzj |
700 | 1 | _ | |a Moodera, Jagadeesh S. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Mandal, Swadhin K. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Münzenberg, Markus |0 P:(DE-HGF)0 |b 12 |
773 | _ | _ | |a 10.1021/acsaelm.2c01428 |g Vol. 5, no. 3, p. 1471 - 1477 |0 PERI:(DE-600)2949097-2 |n 3 |p 1471 - 1477 |t ACS applied electronic materials |v 5 |y 2023 |x 2637-6113 |
856 | 4 | _ | |y Published on 2023-03-06. Available in OpenAccess from 2024-03-06. |u https://juser.fz-juelich.de/record/1005793/files/Manuscript.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/1005793/files/acsaelm.2c01428-1.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1005793 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Chemistry, School of Physical Sciences, Sikkim University, Tadong, Gangtok 737102, India |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a IV. Physikalisches Institute, Georg-August-Universitat Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130513 |
910 | 1 | _ | |a Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata 741246, India |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Institut für Physik─Universität Greifswald, Felix-Hausdorff-Straße 6, Greifswald 17489, Germany |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-10 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-10 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL ELECTRON MA : 2022 |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|