001005796 001__ 1005796
001005796 005__ 20231027114359.0
001005796 0247_ $$2doi$$a10.1016/j.snb.2023.133389
001005796 0247_ $$2ISSN$$a0925-4005
001005796 0247_ $$2ISSN$$a1873-3077
001005796 0247_ $$2Handle$$a2128/34226
001005796 0247_ $$2WOS$$aWOS:000979418700001
001005796 037__ $$aFZJ-2023-01641
001005796 041__ $$aEnglish
001005796 082__ $$a620
001005796 1001_ $$0P:(DE-HGF)0$$aLi, Yongqiang$$b0
001005796 245__ $$aGraphene quantum dots-based magnetic relaxation switch involving magnetic separation for enhanced performances of endoglin detection using ultra-low-field nuclear magnetic resonance relaxometry
001005796 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001005796 3367_ $$2DRIVER$$aarticle
001005796 3367_ $$2DataCite$$aOutput Types/Journal article
001005796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680245456_1230
001005796 3367_ $$2BibTeX$$aARTICLE
001005796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005796 3367_ $$00$$2EndNote$$aJournal Article
001005796 520__ $$aMagnetic relaxation switches (MRS) based on target-induced state changes of magnetic nanoparticles are vital approaches for biomolecule detection in in vitro diagnosis. Recently, magnetic graphene quantum dots have been employed as magnetic probes instead of iron oxide nanoparticles and showed high sensitivity. Introducing magnetic separation into an MRS assay before the relaxometry measurements can enhance the sensitivity, elevateaccuracy, and expand the linear region. In this work, magnetic separation-assisted MRS was developed to detect endoglin utilizing iron oxide as the magnetic carrier and magnetic graphene quantum dots as the magnetic probe. The assay possesses a broad linear region from 5 ng/mL to 50 μg/mL and a sensitive limit of detection of 1.3 ng/mL, which is two orders of magnitude lower than that of MRS without magnetic separation. The high accuracy and consistency have been proved for endoglin (CD105) detection in real samples. This graphene quantum dotbased MRS involving magnetic separation provides a new route for enhancing the sensitivity and accuracy of biomolecule detection.
001005796 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005796 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005796 7001_ $$0P:(DE-HGF)0$$aShi, Zhifeng$$b1
001005796 7001_ $$0P:(DE-HGF)0$$aShang, Liuyang$$b2
001005796 7001_ $$0P:(DE-Juel1)169638$$aTao, Quan$$b3
001005796 7001_ $$0P:(DE-HGF)0$$aTang, Qisheng$$b4
001005796 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b5$$ufzj
001005796 7001_ $$0P:(DE-HGF)0$$aYang, Siwei$$b6$$eCorresponding author
001005796 7001_ $$0P:(DE-HGF)0$$aDing, Guqiao$$b7$$eCorresponding author
001005796 7001_ $$0P:(DE-HGF)0$$aDong, Hui$$b8$$eCorresponding author
001005796 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2023.133389$$gVol. 380, p. 133389 -$$p133389 -$$tSensors and actuators <Lausanne> / B$$v380$$x0925-4005$$y2023
001005796 8564_ $$uhttps://juser.fz-juelich.de/record/1005796/files/Publishers%20version%20%28restricted%29.pdf
001005796 8564_ $$uhttps://juser.fz-juelich.de/record/1005796/files/Authors%20manuscript%20post%20referee.pdf$$yPublished on 2023-01-18. Available in OpenAccess from 2025-01-18.$$zStatID:(DE-HGF)0510
001005796 909CO $$ooai:juser.fz-juelich.de:1005796$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b5$$kFZJ
001005796 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005796 9141_ $$y2023
001005796 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
001005796 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001005796 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001005796 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
001005796 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001005796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT B-CHEM : 2022$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001005796 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSENSOR ACTUAT B-CHEM : 2022$$d2023-10-21
001005796 920__ $$lyes
001005796 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005796 980__ $$ajournal
001005796 980__ $$aVDB
001005796 980__ $$aUNRESTRICTED
001005796 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005796 9801_ $$aFullTexts