001     1005796
005     20231027114359.0
024 7 _ |a 10.1016/j.snb.2023.133389
|2 doi
024 7 _ |a 0925-4005
|2 ISSN
024 7 _ |a 1873-3077
|2 ISSN
024 7 _ |a 2128/34226
|2 Handle
024 7 _ |a WOS:000979418700001
|2 WOS
037 _ _ |a FZJ-2023-01641
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Li, Yongqiang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Graphene quantum dots-based magnetic relaxation switch involving magnetic separation for enhanced performances of endoglin detection using ultra-low-field nuclear magnetic resonance relaxometry
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680245456_1230
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic relaxation switches (MRS) based on target-induced state changes of magnetic nanoparticles are vital approaches for biomolecule detection in in vitro diagnosis. Recently, magnetic graphene quantum dots have been employed as magnetic probes instead of iron oxide nanoparticles and showed high sensitivity. Introducing magnetic separation into an MRS assay before the relaxometry measurements can enhance the sensitivity, elevateaccuracy, and expand the linear region. In this work, magnetic separation-assisted MRS was developed to detect endoglin utilizing iron oxide as the magnetic carrier and magnetic graphene quantum dots as the magnetic probe. The assay possesses a broad linear region from 5 ng/mL to 50 μg/mL and a sensitive limit of detection of 1.3 ng/mL, which is two orders of magnitude lower than that of MRS without magnetic separation. The high accuracy and consistency have been proved for endoglin (CD105) detection in real samples. This graphene quantum dotbased MRS involving magnetic separation provides a new route for enhancing the sensitivity and accuracy of biomolecule detection.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Shi, Zhifeng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shang, Liuyang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tao, Quan
|0 P:(DE-Juel1)169638
|b 3
700 1 _ |a Tang, Qisheng
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 5
|u fzj
700 1 _ |a Yang, Siwei
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Ding, Guqiao
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Dong, Hui
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.snb.2023.133389
|g Vol. 380, p. 133389 -
|0 PERI:(DE-600)1500731-5
|p 133389 -
|t Sensors and actuators / B
|v 380
|y 2023
|x 0925-4005
856 4 _ |u https://juser.fz-juelich.de/record/1005796/files/Publishers%20version%20%28restricted%29.pdf
856 4 _ |y Published on 2023-01-18. Available in OpenAccess from 2025-01-18.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1005796/files/Authors%20manuscript%20post%20referee.pdf
909 C O |o oai:juser.fz-juelich.de:1005796
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128697
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSOR ACTUAT B-CHEM : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SENSOR ACTUAT B-CHEM : 2022
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21