001006405 001__ 1006405
001006405 005__ 20240313103125.0
001006405 0247_ $$2doi$$a10.1038/s42003-023-04580-0
001006405 0247_ $$2Handle$$a2128/34360
001006405 0247_ $$2pmid$$a36914748
001006405 0247_ $$2WOS$$aWOS:000948919700001
001006405 037__ $$aFZJ-2023-01645
001006405 041__ $$aEnglish
001006405 082__ $$a570
001006405 1001_ $$00000-0002-9958-2551$$aCapone, Cristiano$$b0$$eCorresponding author
001006405 245__ $$aSimulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse
001006405 260__ $$aLondon$$bSpringer Nature$$c2023
001006405 3367_ $$2DRIVER$$aarticle
001006405 3367_ $$2DataCite$$aOutput Types/Journal article
001006405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683090841_23008
001006405 3367_ $$2BibTeX$$aARTICLE
001006405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006405 3367_ $$00$$2EndNote$$aJournal Article
001006405 520__ $$aThe development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists.
001006405 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001006405 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001006405 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001006405 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
001006405 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006405 7001_ $$0P:(DE-HGF)0$$aDe Luca, Chiara$$b1
001006405 7001_ $$00000-0001-7079-5724$$aDe Bonis, Giulia$$b2
001006405 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b3$$ufzj
001006405 7001_ $$0P:(DE-HGF)0$$aBernava, Irene$$b4
001006405 7001_ $$00000-0003-0682-1232$$aPastorelli, Elena$$b5
001006405 7001_ $$0P:(DE-HGF)0$$aSimula, Francesco$$b6
001006405 7001_ $$00000-0002-2651-1277$$aLupo, Cosimo$$b7
001006405 7001_ $$0P:(DE-HGF)0$$aTonielli, Leonardo$$b8
001006405 7001_ $$0P:(DE-HGF)0$$aResta, Francesco$$b9
001006405 7001_ $$00000-0002-8489-0076$$aAllegra Mascaro, Anna Letizia$$b10
001006405 7001_ $$0P:(DE-HGF)0$$aPavone, Francesco$$b11
001006405 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b12$$ufzj
001006405 7001_ $$00000-0003-1937-6086$$aPaolucci, Pier Stanislao$$b13
001006405 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-023-04580-0$$gVol. 6, no. 1, p. 266$$n1$$p266$$tCommunications biology$$v6$$x2399-3642$$y2023
001006405 8564_ $$uhttps://juser.fz-juelich.de/record/1006405/files/s42003-023-04580-0.pdf$$yOpenAccess
001006405 909CO $$ooai:juser.fz-juelich.de:1006405$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001006405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b3$$kFZJ
001006405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b12$$kFZJ
001006405 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001006405 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001006405 9141_ $$y2023
001006405 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001006405 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12
001006405 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001006405 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001006405 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006405 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001006405 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006405 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:06Z
001006405 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:06Z
001006405 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:06Z
001006405 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2022$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
001006405 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2022$$d2023-10-27
001006405 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001006405 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001006405 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001006405 9801_ $$aFullTexts
001006405 980__ $$ajournal
001006405 980__ $$aVDB
001006405 980__ $$aUNRESTRICTED
001006405 980__ $$aI:(DE-Juel1)INM-6-20090406
001006405 980__ $$aI:(DE-Juel1)IAS-6-20130828
001006405 980__ $$aI:(DE-Juel1)INM-10-20170113
001006405 981__ $$aI:(DE-Juel1)IAS-6-20130828