Hauptseite > Publikationsdatenbank > Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse > print |
001 | 1006405 | ||
005 | 20240313103125.0 | ||
024 | 7 | _ | |a 10.1038/s42003-023-04580-0 |2 doi |
024 | 7 | _ | |a 2128/34360 |2 Handle |
024 | 7 | _ | |a 36914748 |2 pmid |
024 | 7 | _ | |a WOS:000948919700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01645 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Capone, Cristiano |0 0000-0002-9958-2551 |b 0 |e Corresponding author |
245 | _ | _ | |a Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse |
260 | _ | _ | |a London |c 2023 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1683090841_23008 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists. |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) |0 G:(DE-HGF)POF4-5235 |c POF4-523 |f POF IV |x 1 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 2 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a De Luca, Chiara |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a De Bonis, Giulia |0 0000-0001-7079-5724 |b 2 |
700 | 1 | _ | |a Gutzen, Robin |0 P:(DE-Juel1)171572 |b 3 |u fzj |
700 | 1 | _ | |a Bernava, Irene |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Pastorelli, Elena |0 0000-0003-0682-1232 |b 5 |
700 | 1 | _ | |a Simula, Francesco |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Lupo, Cosimo |0 0000-0002-2651-1277 |b 7 |
700 | 1 | _ | |a Tonielli, Leonardo |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Resta, Francesco |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Allegra Mascaro, Anna Letizia |0 0000-0002-8489-0076 |b 10 |
700 | 1 | _ | |a Pavone, Francesco |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Denker, Michael |0 P:(DE-Juel1)144807 |b 12 |u fzj |
700 | 1 | _ | |a Paolucci, Pier Stanislao |0 0000-0003-1937-6086 |b 13 |
773 | _ | _ | |a 10.1038/s42003-023-04580-0 |g Vol. 6, no. 1, p. 266 |0 PERI:(DE-600)2919698-X |n 1 |p 266 |t Communications biology |v 6 |y 2023 |x 2399-3642 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1006405/files/s42003-023-04580-0.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1006405 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171572 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)144807 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5235 |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-12 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|