

CLOSED LOOP RECYCLING OF SOLID OXIDE CELLS

Hans-Walter-Hennicke Presentation Contest 2023

28/3/2023 I MARTIN HILGER I IEK-1, FORSCHUNGSZENTRUM JÜLICH

SOLID OXIDE CELLS FOR THE "ENERGIEWENDE"

Growing demand on *green* H₂

[1] Robinius et al., Schriften des Forschungszentrums Jülich (Energy & Environment), 2020

SOLID OXIDE CELLS FOR THE "ENERGIEWENDE"

Electrolysis capacities

Resource consumption

Page 2

[1] Robinius et al., Schriften des Forschungszentrums Jülich (Energy & Environment), 2020

[2] Hydrogen Insights report 2022, Hydrogen Council, McKinsey & Company

SOLID OXIDE CELLS FOR THE "ENERGIEWENDE"

[1] Robinius et al., Schriften des Forschungszentrums Jülich (Energy & Environment), 2020

[2] Hydrogen Insights report 2022, Hydrogen Council, McKinsey & Company

SOCs = Solid oxide cells

WHY CLOSED LOOP RECYCLING OF SOCS?

Page 3

Lighter stack design

Increasing share of cell in stack weight and costs

[3] Harboe et al., Int. J. Hydrog. Energy, Vol. 45, 2020

WHY CLOSED LOOP RECYCLING OF SOCS?

[3] Harboe et al., Int. J. Hydrog. Energy, Vol. 45, 2020

REE = Rare earth elements PGM = Platinum group metals

WHY CLOSED LOOP RECYCLING OF SOCS?

Page 3

Limited/ critical resources

REE & PGM Nickel Dependencies

Rising importance of closed loop recycling of cell material

[3] Harboe et al., Int. J. Hydrog. Energy, Vol. 45, 2020

REE = Rare earth elements PGM = Platinum group metals

Elcogen, Website, 2023

Mitglied der Helmholtz-Gemeinschaft

Page 4

Elcogen, Website, 2023

Elcogen, Website, 2023

Elcogen, Website, 2023

POSSIBLE RECYCLING CONCEPT (FZ JÜLICH)

Step Six

Stack testing or stack operation

Step Five

Integration into manufacturing process

Step Four

Powder preparation: Milling and sieving

Step One

Collecting EoL cell fragments

Step Two

Reoxidation of EoL cell fragments

Step Three

Separation: Mechanical or hydrometallurgical

Open-loop raw material recovery

Recycling concept developed by S. Sarner (IEK-1, Forschungszentrum Jülich)

28/3/2023

 $8YSZ = 8 \text{ mol}\% Y_2O_3 \text{ stabilized } ZrO_2$

 $GDC = Gd doped CeO_2$

 $8YSZ = 8 \text{ mol}\% Y_2O_3 \text{ stabilized } ZrO_2$

 $GDC = Gd doped CeO_2$

Page 6

 $8YSZ = 8 \text{ mol}\% Y_2O_3 \text{ stabilized } ZrO_2$

 $GDC = Gd doped CeO_2$

 $8YSZ = 8 \text{ mol}\% Y_2O_3 \text{ stabilized } ZrO_2$

 $GDC = Gd doped CeO_2$

Re-suspending in solvent

RECYCLING OF SINTERED HALF CELLS

 $8YSZ = 8 \text{ mol}\% Y_2O_3 \text{ stabilized } ZrO_2$

 $GDC = Gd doped CeO_2$

RE-PROCESSING OF SINTERED HALF CELLS

RE-PROCESSING OF SINTERED HALF CELLS

RE-PROCESSING OF SINTERED HALF CELLS

Sintered at 1400°C in air

Sintered at 1400°C in air

Microstructure

Similar pore morphology

Sintering behavior

Lowered shrinkage: 13% (Reference 18%)

Sintered at 1400°C in air

Microstructure

Similar pore morphology

Sintering behavior

Lowered shrinkage: 13% (Reference 18%)

Affecting further cell processing route

Page 12

Sintered at 1400°C in air

Reduced at 900°C in H₂/Ar

Microstructure

Similar pore morphology

Sintering behavior

Lowered shrinkage: 13% (Reference 18%)

Affecting further cell processing route

Sintered at 1400°C in air

Reduced at 900°C in H₂/Ar

Microstructure

Similar pore morphology

Microstructure

Higher porosity
Ni grains more spherical

Sintering behavior

Lowered shrinkage: 13% (Reference 18%)

Performance

Percolating Ni expected Reduced mech. stability

Affecting further cell processing route

Green = Ni Red = Zr

Sintered at 1400°C in air

Reduced at 900°C in H₂/Ar

Microstructure

Similar pore morphology

Microstructure

Higher porosity
Ni grains more spherical

Sintering behavior

Lowered shrinkage: 13% (Reference 18%)

Performance

Percolating Ni expected Reduced mech. stability

Affecting further cell processing route

100

100% recycling challenging

Green = Ni Red = Zr

Recycling of substrate green tapes

Re-suspending green tapes to slurry

Nearly no influence on slurry properties

Full recovery of substrate in process

Recycling of substrate green tapes

Nearly no influence on slurry properties

Full recovery of substrate in process

Promising to be implemented into manufacturing of SOCs

Recycling of substrate green tapes

Promising to be implemented into manufacturing of SOCs

Recycling of sintered half cell material

Processing slurry from re-milled half cells

Recycling of substrate green tapes

Promising to be implemented into manufacturing of SOCs

Recycling of sintered half cell material

Processing slurry from re-milled half cells

Full recovery of sintered cells difficult

Recycling of substrate green tapes

Full recovery of substrate in process

Promising to be implemented into manufacturing of SOCs

Recycling of sintered half cell material

Processing slurry from re-milled half cells

Slurry properties, shrinkage, microstructure and mechanical properties affected

Full recovery of sintered cells difficult

Recycling of defined shares realistic Adaptability for End-of-Life material?

Page 13

•

