001006419 001__ 1006419
001006419 005__ 20231027114400.0
001006419 0247_ $$2doi$$a10.1523/JNEUROSCI.0790-22.2023
001006419 0247_ $$2ISSN$$a0270-6474
001006419 0247_ $$2ISSN$$a1529-2401
001006419 0247_ $$2pmid$$a36804738
001006419 0247_ $$2WOS$$aWOS:000965044700010
001006419 037__ $$aFZJ-2023-01659
001006419 082__ $$a610
001006419 1001_ $$0P:(DE-Juel1)180306$$aChu, Congying$$b0$$ufzj
001006419 245__ $$aTotal Sleep Deprivation Increases Brain Age Prediction Reversibly in Multisite Samples of Young Healthy Adults
001006419 260__ $$aWashington, DC$$bSoc.$$c2023
001006419 3367_ $$2DRIVER$$aarticle
001006419 3367_ $$2DataCite$$aOutput Types/Journal article
001006419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690881909_13576
001006419 3367_ $$2BibTeX$$aARTICLE
001006419 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006419 3367_ $$00$$2EndNote$$aJournal Article
001006419 520__ $$aSleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep disruption may accelerate the aging process, yet it is not known what will happen to the age status of the brain if we can manipulate sleep conditions. To tackle this question, we used an approach of brain age to investigate whether sleep loss would cause age-related changes in the brain. We included MRI data of 134 healthy volunteers (mean chronological age of 25.3 between the age of 19 and 39 years, 42 females/92 males) from five datasets with different sleep conditions. Across three datasets with the condition of total sleep deprivation (>24 h of prolonged wakefulness), we consistently observed that total sleep deprivation increased brain age by 1–2 years regarding the group mean difference with the baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We also demonstrated the associations between the change in brain age after total sleep deprivation and the sleep variables measured during the recovery night. By contrast, brain age was not significantly changed by either acute (3 h time-in-bed for one night) or chronic partial sleep restriction (5 h time-in-bed for five continuous nights). Together, the convergent findings indicate that acute total sleep loss changes brain morphology in an aging-like direction in young participants and that these changes are reversible by recovery sleep.SIGNIFICANCE STATEMENT Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental sleep deprivation is a variable-controlling approach to engaging the brain among different sleep conditions for investigating the responses of the brain to sleep loss. Here, we quantified the response of the brain to sleep deprivation by using the change of brain age predictable with brain morphologic features. In three independent datasets, we consistently found increased brain age after total sleep deprivation, which was associated with the change in sleep variables. Moreover, no significant change in brain age was found after partial sleep deprivation in another two datasets. Our study provides new evidence to explain the brainwide effect of sleep loss in an aging-like direction.
001006419 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001006419 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006419 7001_ $$0P:(DE-HGF)0$$aHolst, Sebastian C.$$b1
001006419 7001_ $$0P:(DE-HGF)0$$aElmenhorst, Eva-Maria$$b2
001006419 7001_ $$0P:(DE-Juel1)179271$$aFoerges, Anna L.$$b3$$ufzj
001006419 7001_ $$0P:(DE-Juel1)174035$$aLi, Changhong$$b4
001006419 7001_ $$0P:(DE-Juel1)165827$$aLange, Denise$$b5
001006419 7001_ $$0P:(DE-HGF)0$$aHennecke, Eva$$b6
001006419 7001_ $$0P:(DE-HGF)0$$aBaur, Diego M.$$b7
001006419 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b8$$ufzj
001006419 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b9$$ufzj
001006419 7001_ $$00000-0003-1508-6866$$aKnudsen, Gitte M.$$b10
001006419 7001_ $$0P:(DE-HGF)0$$aAeschbach, Daniel$$b11
001006419 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b12$$ufzj
001006419 7001_ $$0P:(DE-HGF)0$$aLandolt, Hans-Peter$$b13
001006419 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b14$$eCorresponding author$$ufzj
001006419 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.0790-22.2023$$gVol. 43, no. 12, p. 2168 - 2177$$n12$$p2168 - 2177$$tThe journal of neuroscience$$v43$$x0270-6474$$y2023
001006419 8564_ $$uhttps://juser.fz-juelich.de/record/1006419/files/Invoice_JNeurosci08278.pdf
001006419 8564_ $$uhttps://juser.fz-juelich.de/record/1006419/files/2168.full.pdf$$yRestricted
001006419 8767_ $$8JNeurosci08278$$92023-01-19$$a1200190151$$d2023-01-30$$eHybrid-OA$$jZahlung erfolgt$$zUSD 2385,-; FZJ-2023-00908
001006419 909CO $$ooai:juser.fz-juelich.de:1006419$$popenCost$$pOpenAPC$$pVDB
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180306$$aForschungszentrum Jülich$$b0$$kFZJ
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179271$$aForschungszentrum Jülich$$b3$$kFZJ
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b8$$kFZJ
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b9$$kFZJ
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b12$$kFZJ
001006419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b14$$kFZJ
001006419 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001006419 9141_ $$y2023
001006419 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006419 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006419 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-13
001006419 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
001006419 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
001006419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2022$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001006419 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2022$$d2023-10-21
001006419 920__ $$lyes
001006419 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
001006419 980__ $$ajournal
001006419 980__ $$aVDB
001006419 980__ $$aI:(DE-Juel1)INM-2-20090406
001006419 980__ $$aAPC
001006419 980__ $$aUNRESTRICTED
001006419 9801_ $$aAPC