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ARTICLE INFO ABSTRACT

Keywords: One of the major design limitations for tokamak fusion reactors is the heat load that can be sustained by
Solps the materials at the divertor target. Developing a full understanding of how machine or operation parameters
Plasma exhaust affect the conditions at the divertor requires an enormous number of simulations. A promising approach to
Divertor

circumvent this is to use machine learning models trained on simulation data as surrogate models. Once trained
such surrogate models can make fast predictions for any scenario in the design parameter space. In future such
simulation based surrogate models could be used in system codes for rapid design studies of future fusion
power plants. This work presents the first steps towards the development of such surrogate models for plasma
exhaust and the datasets required for their training. Machine learning models like neural networks usually
require several thousand data points for training, but the exact amount of data required varies from case to
case. Due to the long runtimes of simulations we aim at finding the minimal amount of training data required.
A preliminary dataset based on SOLPS-ITER simulations with varying tokamak design parameters, including
the major radius, magnetic field strength and neutral density is constructed. To be able to generate more
training data within reasonable computation time the simulations in the dataset use fluid neutral simulations
and no fluid drift effects. The dataset is used to train a simple neural network and Gradient Boosted Regression
Trees and test how the performance depends on the number of training simulations.

Surrogate
Machine learning
Neural network

1. Introduction the surrogate model, the overall computational effort should be less
than exploring the high-dimensional parameter space by simulation

The sustainable heat load at the divertor targets poses a major alone. In addition some surrogate models like neural networks are
design limitation for tokamak fusion reactors. In divertor tokamaks the differentiable and can therefore be used for gradient based design opti-
core plasma is surrounded by a region of magnetic field lines which mization. Surrogate modeling is being used in a vast number of fields,
start and end at the divertor targets. This so called scrape-off layer e.g. engineering [2], medicine [3], neuroscience [4], plasma physics [5]

(SOL) is crucial for the transport of heat and particles from the main
plasma to the divertor. For the development of future reactors it is
vital to have models that accurately describe the effects of reactor
design and operation on the scrape-off layer and the heat load at the
divertor. Plasma exhaust codes like SOLPS-ITER simulate the multi-
physics phenomena in the SOL sufficiently [1], but each simulation

and has also been tested for scrape-off layer simulations [6-8].

We aim at testing the creation of simulation datasets and surrogate
models covering the influence of reactor design and operation on the
dynamics in the scrape-off layer.

yields only a result for a single tested scenario. Due to the many 2. Methods
relevant design and operating parameters and the long simulation run
times it is impossible to simulate all reasonable scenarios and some 2.1. Data generation

simulation parameters (e.g. anomalous transport) are unknown for
new reactors. This gap can be bridged by surrogate models. Surrogate
models are machine learning models trained on simulation data, that
are than able to interpolate in the parameter space and produce fast
results for all scenarios. Because each datapoint for training requires a
computationally demanding simulation, the goal in surrogate modeling
is to train a model with the least amount of data possible. While this
approach still requires running many simulations as training data for

In this study we run a large number of scrape-of layer plasma
simulations while systematically varying eight tokamak parameters.
The tokamak geometry is lower single null with vertical targets. The
simulations are conducted with the SOLPS-ITER code package [9].
From this code only the fluid solver B2.5 is used [10]. This code
solves the Braginskii equations for the plasma ions and similar fluid
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Fig. 1. Computational grids of 3 simulations with varying major radius R. The colors
mark grid borders used for boundary conditions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

equations for neutral gas particles. This fluid neutral model is less
computationally demanding than the more exact kinetic neutral model
and therefore allows for running more simulations. While this approach
might reduce the quantitative accuracy of the simulations, the overall
trends are still recovered [11] such that the lessons learned can be
transferred to a repetition of this study using kinetic neutral models.
The simulations contain eight plasma fluids, deuterium ions and all
ionization stages of nitrogen and two neutral fluids, atomic deuterium
and nitrogen. The simulations shown here are all conducted using sim-
ilar settings as in [12], that showed to yield stable simulations in low
and high density regimes. All simulations are started from a state with
constant densities ([np,np+,ny,ny<| = [1016,101,10'2,1012] 1/m3)
and temperatures (7, = T; = 100 eV) in the whole simulation domain.
To scan different operational tokamak regimes we vary the tokamak
size R, magnetic field strength B, deuterium gas puff D, ,,, nitrogen
gas puff N, ., deuterium core fueling Dcore, input power P, and
the cross field diffusivities for the ion densities D; and the anomalous
thermal diffusivity y. Varying tokamak size and magnetic field requires
changes to the computational grid, which is aligned to the magnetic
field lines. The currently employed grid generators require manual
corrections (or at least manual oversight). Because of the many runs,
it is impossible to inspect all grids manually. We therefore restrict
ourselves to variations that keep the shape of the computational grid
unchanged. Variations in the major radius of the tokamak result in a
proportional stretching of the x and y coordinates of all grid cells and
the poloidal magnetic field strength is changed proportionally to the
toroidal magnetic field strength in each grid cell. Similar scalings were
already used in [13]. Examples of the resulting computational grids
are depicted in Fig. 1. The computational grid has 102 cells in the
poloidal and 48 cells in the radial direction. The number of grid cells
stays constant for all tokamak sizes. Because the number of grid cells
is higher than usually used for SOLPS simulations and simulations with
fluid neutrals are resilient against low grid resolutions [14] we assume
that our grid resolution is adequate for all tested tokamak sizes.
While R and B determine the size and the magnetic field strength
inside the computational grid, D/, Nyf s> Deore» Piy act as boundary
conditions for the solved plasma equations. D, and N, , determine
the source of neutral atoms at the outside boundary of the grid, D,,,,
determines the source of deuterium ions at the core boundary and
P,, determines the energy flowing into the simulation domain from
the core (see Fig. 1). At all these boundaries the total sources are
distributed uniformly along the given boundary. The power P,, is
distributed evenly to the electron and ion heat balance equations.
The domain boundary in the private flux region acts as pump for all
particles, with fixed pumping rates. The pumped flux for each fluid
is given by I, = r,c,,n, with ¢;, and n, being the sound speed
and density of the fluid and the constant pump rates r, = 0.5 for
neutrals and r, = 0.001 for ions. D, and y are scalar parameters
in the transport equations and are constant on the whole grid. The
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Table 1

Overview of the parameters varied in the dataset. For each varied parameter the
minimal and maximal values and the units are given. The scale describes whether
the datapoints are distributed uniformly over a linear scale between minimum and
maximum (lin) or uniformly over a logarithmic scale between minimum and maximum
(log).

R B D/mff N/mff D, P, D, X
min 1 1 10% 10'8 10" 10 0.1 0.1
max 10 10 10%* 10% 10%# 200 2 2
Units m T at/s at/s at/s MW m?/s m?/s
Scale lin lin log log log lin lin lin

parameters for each simulation are selected inside the given limits
(Table 1) according to a Sobol sequence [15]. This low-discrepancy
sequence covers the parameter space more efficiently compared to
random numbers or other such sequences [16]. For D, ¢ ¢, N,z ¢» Deore
the datapoints are distributed logarithmically (base 10) in the given
ranges. The simulations are run for intervals of 1 s simulated time
with a timestep of 10~ s until the simulation is either converged to
a steady state, shows (stable) oscillations or has been run for a total
of 3 s. Simulations are defined as converged when the ratio between
the maximum and the minimum outer midplane electron separatrix
density in the last 0.1 s of a 1 s run is less than 0.1% and a simulation
counts as oscillating if the ratio between the maximum/minimum outer
midplane separatrix density in the first and last 0.1 s of a 1 s run is
less than 0.5% (similar as in [12]). A total of 4096 training simulations
are conducted using this scheme. To act as a test set an additional
1024 simulations are conducted similarly with the exception of being
distributed pseudo-randomly in the parameter space.

2.2. Surrogate training

The final values of all stable (non diverging) simulations are used
for training of surrogate models. This introduces the simulation time
as hidden parameter to our surrogate models since not all simulations
reached a steady state, but since all non converged simulations are
run equally long this should not impact the surrogate performance
immensely. The simulation data is used to train fully-connected feed-
forward neural networks (NN) [17] and gradient boosted regression
trees (GBRT) [18]. Both model types receive as input the eight sim-
ulation parameters (scaled to mean zero and standard deviation one)
and are trained to predict the electron temperature in the last row of
grid cells in front of the outer divertor target (output dimensionality:
48). In the case of GBRT this means training 48 models in parallel,
each predicting the scalar temperature in its designated grid cell. Before
training the temperatures are normalized to standard gaussians using a
quantile transformer [19] with 100 quantiles (independently for each
target grid cell). Such a non-linear transformation is required due to
the large range of temperatures present in the simulations.

For both model types a hyperparameter search was conducted to
find the best performing models. For GBRT a small grid search and
for the NN a random search with 100 trials were run. The respective
searched parameter ranges are depicted in Tables 2 and 3. All NN were
trained with mean absolute error loss, the Adam optimizer [20] and
Early-Stopping based on the validation loss with a patience of 100
epochs (patience scaled proportionally when training on data subset).
In both cases the models were trained with 5-fold cross validation
and the best model was selected based on the lowest mean validation
score across the 5 folds. To evaluate the performance on the test set
a final model was constructed by retraining the GBRT with the best
hyperparameters from scratch on all the training data (of the selected
subset). Instead of retraining the NN with the best hyperparameters,
the final predictions on the test set were generated by averaging the
predictions from the 5 networks trained on the different folds of the
training data. The results in Section 3.2 always depict the performance
on the test set of the final models. It is vital to find surrogate models
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Fig. 2. Status of all started training simulations. A Each dot represents a started simulation with a given input power P,, and major radius R. The color represents whether
the simulation diverged. B The fraction of all started simulations per deuterium gas puff D, ., that are categorized into one of the 4 states (diverged, oscillation, steady state,
unclassified). The classification into oscillation and steady state is described in Section 2.1 and a simulation counts as unclassified if it reaches the full 3s runtime without fitting
one of the other categories. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
GBRT grid search - All parameter combinations are tested.

Tested values

{3,4,5,6}
{0.01,0.05,0.1}
[200,1600] in steps of 200

Parameter

Tree depth
Learning rate
Number of estimators

Table 3

NN random search - 100 trials with randomly chosen parameters from the given ranges.
The learning rate and L2 regularization were sampled in logarithmic domain. Batch
normalization was only tested with Relu and Elu activations. Each hidden layer has
the same number of neurons.

Parameter Searched range
Number of hidden layers [1,10]
Neurons per hidden layer [100,2000]

[0.0001,0.005]
[0.0001,0.01]
{Relu,Elu,Selu}
[20,200]
{True,False}

Learning rate

L2 regularization
Activation
Mini-batch size
Batch normalization

that can be trained with minimal amounts of training data, to be able
to create future surrogate models on more computationally demanding
simulations. To test our model types in that regard we repeated the
whole procedure of parameter search based on cross validation and re-
training/averaging of a final model independently for different amounts
of simulations. Because the simulations are generated according to
a sobol sequence we do not select random subsets of the data but
the first 2Y N € {7,8,9,10, 11,12} simulations. Due to the charac-
teristics of the sobol sequence this ensures that also for the smaller
simulation counts the whole parameter space is explored. Because the
sobol sequence determines the started simulations, and some of these
simulations diverge, the actual number of stable simulations used is
slightly smaller (see Fig. 4). The test set to report the final performances
stays always the same.

2.3. Software and hardware

All simulations are conducted on the batch nodes of JURECA
DC [21] with SOLPS-ITER version 3.0.7 [9,13]. The analysis and
surrogate training is done with Python version 3.8.5 and the packages
numpy 1.18.5 [22], scipy 1.5.2 [23], pandas 1.1.3 [24,25], matplotlib
3.3.1 [26], scikit-learn 0.23.2 [19] and tensorflow 2.3.1 [27].

3. Results and discussion
3.1. Overview of the dataset

The parameters selected according to the sobol sequence fill the
whole parameter space with constant density (Fig. 2A). Of all 4096
started training simulations 1198 diverge, meaning a state variable
increases to unphysical high values, causing a code error. As is depicted
in Fig. 2A these diverging simulations occur in all regions of the
parameter space. This happens because the independent variation of
the eight simulation parameters, leads to unsensible combinations of
parameters which describe systems of equations with no solution. It
can however not be concluded whether all of the diverging simulations
describe unphysical situations or whether some could be solved with
a different numerical procedure. Not all simulations are equally likely
to diverge but e.g. more simulations diverge with small tokamak size
and large input power (Fig. 2A) or with low deuterium gas puffs
(Fig. 2B). The simulations that do not diverge can be further cate-
gorized into ones converging to a steady state or exhibiting stable
oscillations (see Section 2). Such oscillations have previously been
seen in similar fluid neutral simulations where the oscillations were
deemed to have a physical origin [28]. This is further substantiated
by studies that identified physical origin mechanisms of oscillations
in the scrape-off layer [29,30]. For small deuterium gas puffs more
simulations converge to a steady state than oscillations, while this is
reversed for high deuterium gas puffs (Fig. 2B). Due to the reduced
divergence rate, we have more stable simulations with high deuterium
gas puff. Of these stable simulations a higher fraction reaches neither
of the converged states during the 3 s runtime (Fig. 2B). This is most
likely because the simulations with high deuterium gas puff tend to
have higher plasma densities and because our initial state has a very
low plasma density, these runs require longer to reach a final state.
Depending on the fraction of the simulations that will then end in
the static convergence compared to oscillations, this could also change
the before described ratio. The simulations cover a diverse field of
physical regimes, distinguishable by the present temperature gradients.
In 46% of all stable simulations the separatrix electron temperature
at the outer midplane and the outer target differ by less than 20%
suggesting that these are in a sheath-limited regime, meaning the only
meaningful temperature gradient occurs in the sheath, which is not
modeled in these simulations (only as a boundary condition). 13% of
the simulations have a temperature gradient towards the inner target,
while the temperature at the outer target is still close to the outer
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Fig. 4. Performance of surrogate models trained on data subsets. A The median absolute error on the test set for NN and GBRT models with optimized hyperparameters trained
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in the test set. The color gets brighter with more points at the same plot position. B-E show the predictions of the NN models and F-I of the GBRT models. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

midplane, while 35% of the simulations have significant temperature
gradients towards both divertor targets. In an additional 5% of the
simulations the whole simulation domain is cooled down, such that
the outer midplane temperature is below 10 eV. Due to these different
regimes the temperature values at the outer divertor target used for
training the surrogate span several orders of magnitudes. The lowest
target temperature is 10~ eV, the highest 10° eV, while the mean
is 4822 eV with a standard deviation of 31570 eV, the median target
temperature is 6.5 eV.

3.2. Training a surrogate model

The predictions of the surrogate models developed on the whole
training data for four test simulations are depicted in Fig. 3. Both

the GBRT and NN model predict always temperatures of the correct
order of magnitude, which is already an achievement, given the vast
temperature ranges present in the data. Also the general shape of
the temperature profiles across the target is successfully captured by
both models. Especially the spiking temperature at the left side of
the simulation in Fig. 3A is recovered by both models although the
maximum temperature in the GBRT model is 10 eV too low. These
temperature spikes are present in several simulations with low target
temperatures. We believe these are simulation artifacts stemming from
the close proximity of these target grid cells to the grid boundary in the
private flux region (see Fig. 1) which acts as particle pump in the fluid
neutral simulations. However a full analysis of this phenomena is still
required. In the examples of Fig. 3B and D the GBRT model predicts
some temperatures by a factor of 2-3 too high or too low. The NN



S. Dasbach and S. Wiesen

predictions correspond very accurately to the simulation results, only
Fig. 3C shows some stronger discrepancies. Further it can be observed
that the smoothness of the profiles in the simulations is not necessarily
reproduced by the models (Fig. 3C and D). To generate more realistic
profiles it could therefore prove useful to apply some smoothing func-
tions after the model predictions or constrain the models to provide
smooth profiles themselves.

Instead of evaluating the surrogate accuracy solely on a few ex-
amples Fig. 4 compares the predictions with the simulations on the
whole test set. Comparing Fig. 4E to I shows that indeed the predictions
of the NN are closer to the simulations than the GBRT predictions.
Nevertheless in some cases also the temperatures predicted by the
neural network can be orders of magnitude too high or too low.
Interestingly Fig. 4E and I show some similar patterns in the most
extreme too high predicted temperatures, so it is likely these stem from
the same test simulations. With smaller number of training simulations
the accuracy of the neural network decreases. While in Fig. 4C the
network is still able to recover at least the order of magnitude in the
high temperature range, below 100 training simulations the predictions
become a lot more diffuse (Fig. 4B) and show only slight correlation to
the true simulation temperatures. Fig. 4F-I show similar results for the
GBRT models. To quantify the performance of the models trained with
different amounts of data we calculate the median absolute error on
the fixed test set (Fig. 4A). Because the normalization with the quantile
transformer has to be redone for each training data set to avoid data
spillage, the prediction error is evaluated after back-transformation into
the unnormalized domain. The test error shows a large improvement
with the number of training simulations in case of the neural network
based models and a smaller improvement in case of the GBRT models.
For smaller number of simulations the GBRT models achieve a better
score while for high number of simulations the neural networks seem
superior. The best median test error of the neural networks is 1.6 eV
and 2.6 eV of the GBRT model. However since we employed only a
very coarse optimization for few of the hyperparameters in the GBRT
models, future work with a more thorough optimization might be
able to improve GBRT performance. Similarly also for neural network
based surrogates different architectures are worth investigating, such
as the use of convolutional layers that benefit from the correlation
between temperature values of neighboring grid cells. Since some of
the simulations in this dataset show unreasonable conditions with
e.g. extremely high or low plasma core temperatures it should also be
tested if an exclusion of those improves the surrogate accuracy in the
reactor relevant regimes. An interesting question is how models behave
if they are given more input information like the upstream conditions or
if models can be informed by analytically constructed reduced models
(e.g. the 2-point model [31]). Finally future models should predict not
only the temperatures but also densities and particle and heat fluxes
and make these predictions not only at the divertor target but in the
whole simulation domain.
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