001006430 001__ 1006430
001006430 005__ 20240529074835.0
001006430 0247_ $$2doi$$a10.1111/pce.14587
001006430 0247_ $$2ISSN$$a0140-7791
001006430 0247_ $$2ISSN$$a1365-3040
001006430 0247_ $$2Handle$$a2128/34593
001006430 0247_ $$2pmid$$a36942406
001006430 0247_ $$2WOS$$aWOS:000960343500001
001006430 037__ $$aFZJ-2023-01665
001006430 041__ $$aEnglish
001006430 082__ $$a580
001006430 1001_ $$0P:(DE-Juel1)176476$$aMüllers, Yannik$$b0
001006430 245__ $$aDeep‐water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean
001006430 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2023
001006430 3367_ $$2DRIVER$$aarticle
001006430 3367_ $$2DataCite$$aOutput Types/Journal article
001006430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687856230_16833
001006430 3367_ $$2BibTeX$$aARTICLE
001006430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006430 3367_ $$00$$2EndNote$$aJournal Article
001006430 520__ $$aModerate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%–72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake.
001006430 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001006430 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006430 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes A.$$b1
001006430 7001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b2$$ufzj
001006430 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b3$$eCorresponding author$$ufzj
001006430 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.14587$$gp. pce.14587$$n7$$p2046-2060$$tPlant, cell & environment$$v46$$x0140-7791$$y2023
001006430 8564_ $$uhttps://juser.fz-juelich.de/record/1006430/files/Plant%20Cell%20Environment%20-%202023%20-%20M%20llers%20-%20Deep%E2%80%90water%20uptake%20under%20drought%20improved%20due%20to%20locally%20increased%20root.pdf$$yOpenAccess
001006430 8767_ $$d2023-04-03$$eHybrid-OA$$jDEAL
001006430 909CO $$ooai:juser.fz-juelich.de:1006430$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001006430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b1$$kFZJ
001006430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich$$b2$$kFZJ
001006430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b3$$kFZJ
001006430 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001006430 9141_ $$y2023
001006430 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-24
001006430 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-24
001006430 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001006430 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-24$$wger
001006430 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-24
001006430 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006430 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
001006430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2022$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001006430 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2022$$d2023-08-26
001006430 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006430 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001006430 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001006430 980__ $$ajournal
001006430 980__ $$aVDB
001006430 980__ $$aUNRESTRICTED
001006430 980__ $$aI:(DE-Juel1)IBG-2-20101118
001006430 980__ $$aAPC
001006430 9801_ $$aAPC
001006430 9801_ $$aFullTexts