001006441 001__ 1006441
001006441 005__ 20240712100832.0
001006441 0247_ $$2doi$$a10.5194/egusphere-2023-408
001006441 0247_ $$2Handle$$a2128/34495
001006441 037__ $$aFZJ-2023-01675
001006441 1001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b0$$eCorresponding author
001006441 245__ $$aThe QBO and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
001006441 260__ $$c2023
001006441 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1685955456_3062
001006441 3367_ $$2ORCID$$aWORKING_PAPER
001006441 3367_ $$028$$2EndNote$$aElectronic Article
001006441 3367_ $$2DRIVER$$apreprint
001006441 3367_ $$2BibTeX$$aARTICLE
001006441 3367_ $$2DataCite$$aOutput Types/Working Paper
001006441 520__ $$aThe quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have large difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations by the Aeolus satellite instrument, and three meteorological reanalyses (ERA-5, JRA-55, and MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that on zonal average the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Different from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally certain biases exist, particularly in the QBO wind shear zones, and around the 2019–2020 QBO disruption.
001006441 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001006441 536__ $$0G:(GEPRIS)429838442$$aDFG project 429838442 - Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus? (429838442)$$c429838442$$x1
001006441 588__ $$aDataset connected to CrossRef
001006441 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou A.$$b1
001006441 7001_ $$0P:(DE-Juel1)173706$$aKhordakova, Dina$$b2$$ufzj
001006441 7001_ $$0P:(DE-HGF)0$$aKrisch, Isabell$$b3
001006441 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b4$$ufzj
001006441 7001_ $$00000-0002-8503-0094$$aReitebuch, Oliver$$b5
001006441 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b6$$ufzj
001006441 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
001006441 773__ $$a10.5194/egusphere-2023-408
001006441 8564_ $$uhttps://juser.fz-juelich.de/record/1006441/files/egusphere-2023-408.pdf$$yOpenAccess
001006441 909CO $$ooai:juser.fz-juelich.de:1006441$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b0$$kFZJ
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b1$$kFZJ
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173706$$aForschungszentrum Jülich$$b2$$kFZJ
001006441 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b4$$kFZJ
001006441 9101_ $$0I:(DE-HGF)0$$60000-0002-8503-0094$$aExternal Institute$$b5$$kExtern
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b6$$kFZJ
001006441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
001006441 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001006441 9141_ $$y2023
001006441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006441 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006441 920__ $$lyes
001006441 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001006441 9801_ $$aFullTexts
001006441 980__ $$apreprint
001006441 980__ $$aVDB
001006441 980__ $$aUNRESTRICTED
001006441 980__ $$aI:(DE-Juel1)IEK-7-20101013
001006441 981__ $$aI:(DE-Juel1)ICE-4-20101013