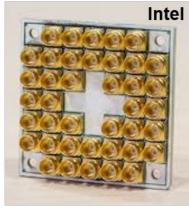
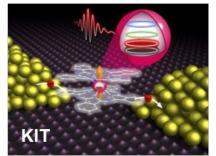
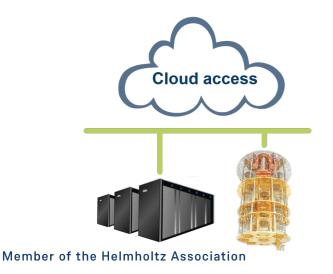


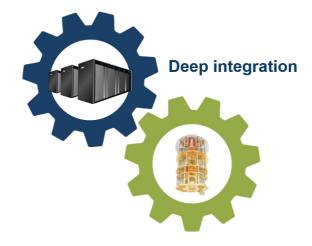
QUANTUM COMPUTING AT JSC JUNIQ - JÜLICH UNIFIED INFRASTRUCTURE FOR QUANTUM COMPUTING


22 MARCH 2023 I MADITA WILLSCH



JARA-IQI


Google


IBM

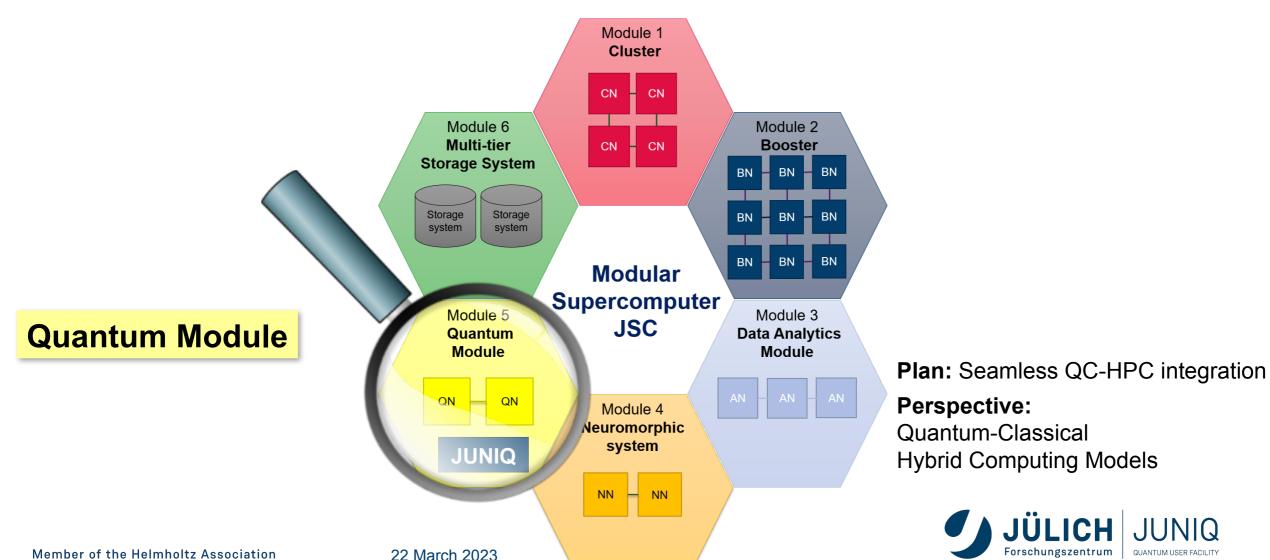
Hybrid quantum-classical computing systems

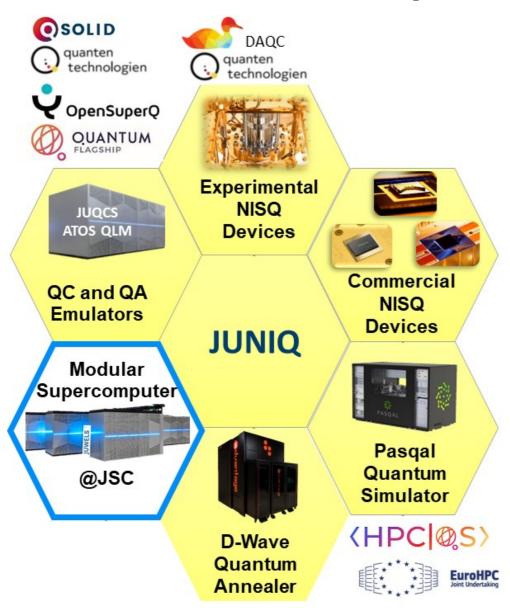
for the realization of the full potential of quantum computing

- Hybrid quantum-classical algorithms
 - Apply parameterized transformations to quantum system, evaluate energy expectation value → classical optimization algorithm suggests new parameters
 - Variational Quantum Eigensolver VQE: quantum chemistry
 - Quantum Approximate Optimization Algorithm QAOA: optimization
 - Classic workflows with potential quantum content
- Hybrid quantum-classical hardware

Latencies & execution times

JUNIQ in the Modular Supercomputing Architecture


A European quantum computer user facility at the Jülich Supercomputing Centre


Member of the Helmholtz Association

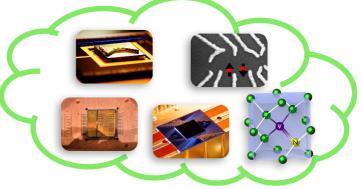
JUNIQ in the Modular Supercomputing Architecture

A European quantum computer user facility at the Jülich Supercomputing Centre

JUNIQ in the Modular Supercomputing Architecture

Quantum Computer User Facility:

- QC user facility for science and industry
- Installation, operation and provision of QCs
- Unified portal for access to QC emulators and to QC devices at different levels of technological maturity, based on different technologies and with different functionalities (QC-PaaS)
- Development and benchmarking of algorithms and prototype applications
- Services, training and user support
- Modular quantum-HPC hybrid computing



D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

Pasqal simulator ((HPC|QS): EUROHPC-JU)

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019

2020

2021

2022

Cloud access:

2023

2024

2029

Emulators: JUQCS ATOS QLM

(JUNIQ: BMBF, MKW-NRW)

Building: (JUNIQ: BMBF, MKW-NRW)

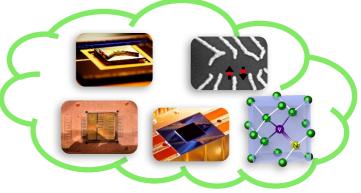
Q: BMBF,
NRW)

(Qsolid: BMBF;
OpenSuperQ:
Quantum Flagship)

Cloud access: digital-analog quantum computer

(DAQC: BMBF)

HELMHOLTZ
QUANTUM
LARGE INFRASTRUCTURE



D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

Pasqal simulator ((HPC|QS): **EUROHPC-JU)**

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019

2020

2021

2022

Cloud access:

2023

2024

2029

Emulators: JUQCS ATOS QLM (JUNIQ. BMBF, MKW NRW) JUQCS **ATOS QLM**

Member of the Helmholtz Association

Building: (JUNIQ: BMBF, MKW-NRW)

NISQ computer (Qsolid: BMBF; OpenSuperQ: Quantum Flagship)

Cloud access: digital-analog quantum computer

(DAQC: BMBF)

HELMHOLTZ QUANTUM LARGE INFRASTRUCTURE

22 March 2023

Page 8

Jülich Universal Quantum Computer Simulator – JUQCS

What?

Emulation of gate-based quantum computers

How?

- State-vector simulation → memory requirement is 2^N
- Gate-applications (matrix multiplication) performed by 2- or 4-component updates
- Efficient MPI-communication scheme
- GPU version available

• What for?

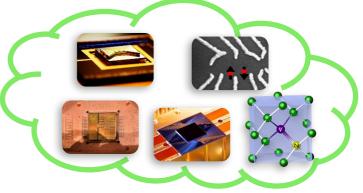
- Benchmarking of real devices and quantum algorithms
- Verification of (implementations of) quantum algorithms

JUQCS

De Raedt et al., CPC 176, 121 (2007)

De Raedt et al., CPC 237, 47 (2019)

Willsch et al., CPC 278, 108411 (2022)



D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

Pasqal simulator ((HPC|QS): EUROHPC-JU)

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019 > 2020

> 2021

2022

2023

2024

2029

Emulators: JUQCS ATOS QLM (JUNIQ: BMBF,

Member of the Helmholtz Association

Building:

JUNIQ: BMBF,

MKW-NRW)

Cloud access: NISQ computer

(Qsolid: BMBF; OpenSuperQ: Quantum Flagship)

Cloud access: digital-analog quantum computer

(DAQC: BMBF)

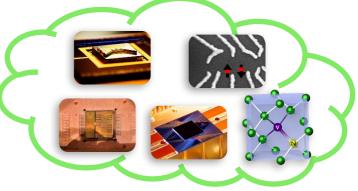
HELMHOLTZ QUANTUM

LARGE INFRASTRUCTURE

22 March 2023

Page 10

The JUNIQ Building



Cloud access: D-Wave 2000 (JUNIQ: BMBF, MKW-NRW)

D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

Pasqal simulator ((HPC|QS): **EUROHPC-JU)**

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019

2020

2021

2022

Cloud access:

2023

2024

2029

Emulators: JUQCS ATOS QLM

(JUNIQ: BMBF, MKW-NRW)

Building: (JUNIQ: BMBF,

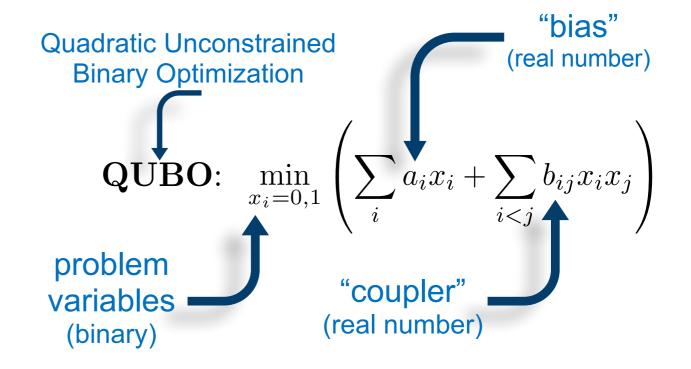
NISQ computer MKW-NRW) (Qsolid: BMBF; OpenSuperQ: Quantum Flagship)

Cloud access: digital-analog quantum computer

(DAQC: BMBF)

HELMHOLTZ QUANTUM LARGE INFRASTRUCTURE

Member of the Helmholtz Association


22 March 2023

Page 12

Quantum Annealers

What do they do?

Why might this be interesting?

- discrete optimization is hard (NP-hard)
- produces many solutions "simultaneously"
- low energy consumption (compared to HPC)

D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019

2020

2021

2022

Cloud access:

2023

2024

2029

Emulators: JUQCS ATOS QLM

(JUNIQ: BMBF, MKW-NRW)

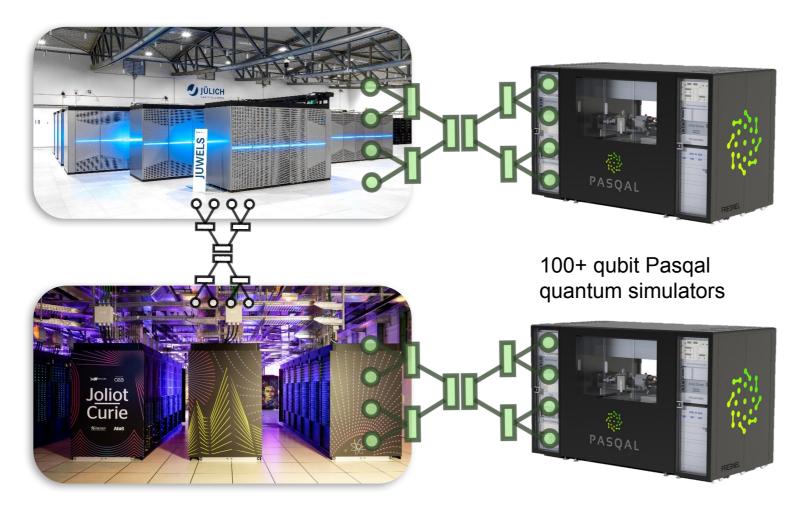
Building: (JUNIQ: BMBF,

NISQ computer MKW-NRW) (Qsolid: BMBF; OpenSuperQ: Quantum Flagship)

Cloud access: digital-analog quantum computer

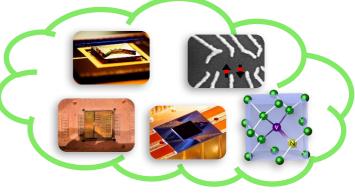
(DAQC: BMBF)

HELMHOLTZ QUANTUM LARGE INFRASTRUCTURE



High Performance Computer and Quantum Simulator hybrid

Support for the first hybrid HPC / **Quantum Computing** infrastructure in Europe



Cloud access: D-Wave 2000Q (JUNIQ: BMBF, MKW-NRW) D-Wave Advantage (JUNIQ: BMBF, MKW-NRW)

Pasqal simulator ((HPC|QS): EUROHPC-JU)

IBM Q, Google, ion trap systems, NV-centers in diamond, electron spins in silicon ...

2019

2020

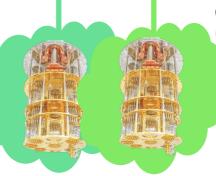
2021

2022

2023

2024

2029


Emulators: JUQCS ATOS QLM (JUNIQ: BMBF,

JUQCS ATOS QLM

Building: (JUNIQ: BMBF, MKW-NRW) Cloud access: NISQ computer (Qsolid: BMBF;

OpenSuperQ: Quantum Flagship)

Cloud access: digital-analog quantum computer

(DAQC: BMBF)

HELMHOLTZ QUANTUM

LARGE INFRASTRUCTURE

Hybrid Usage of High Performance & Quantum Computers

Quantum Computers, Simulators & Annealers

High Performance Computers

Successful development of quantum computing applications

Hybrid Usage of High Performance & Quantum Computers

Quantum Computers, Simulators & Annealers

Thank you for your attention

Successful development of quantum computing applications

High Performance

Computers