001006568 001__ 1006568
001006568 005__ 20231027114400.0
001006568 0247_ $$2doi$$a10.1016/j.jcat.2023.03.011
001006568 0247_ $$2ISSN$$a0021-9517
001006568 0247_ $$2ISSN$$a1090-2694
001006568 0247_ $$2Handle$$a2128/34330
001006568 0247_ $$2WOS$$aWOS:000956023800001
001006568 037__ $$aFZJ-2023-01716
001006568 041__ $$aEnglish
001006568 082__ $$a540
001006568 1001_ $$0P:(DE-HGF)0$$aVennewald, Maurice$$b0
001006568 245__ $$aDynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation
001006568 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001006568 3367_ $$2DRIVER$$aarticle
001006568 3367_ $$2DataCite$$aOutput Types/Journal article
001006568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681982401_23254
001006568 3367_ $$2BibTeX$$aARTICLE
001006568 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006568 3367_ $$00$$2EndNote$$aJournal Article
001006568 520__ $$aSingle-atoms on carbon–nitrogen supports are considered catalysts for a multitude of reactions. However, doubts remain whether really these species or subnanometer clusters formed under reaction conditions are the active species. In this work, we investigate the dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation and H2-D2 exchange. By employing aberration-corrected scanning transmission electron microscopy, x-ray photoelectron spectroscopy and x-ray absorption spectroscopy, we will show that palladium, originally present as single-atoms, agglomerates to clusters at 100 °C in a gas atmosphere that contains both ethylene and hydrogen. This agglomeration goes in hand with the emergence of catalytic activity in both ethylene hydrogenation and H2-D2 exchange, suggesting that clusters, rather than single-atoms, are the active species. The results presented herein highlight the potential of analytics over the course of reaction to identify the active species and provide new insights into the influence of gas atmosphere on metal speciation.
001006568 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001006568 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006568 7001_ $$0P:(DE-HGF)0$$aSackers, Nina Michelle$$b1
001006568 7001_ $$0P:(DE-HGF)0$$aIemhoff, Andree$$b2
001006568 7001_ $$0P:(DE-HGF)0$$aKappel, Isabella$$b3
001006568 7001_ $$0P:(DE-HGF)0$$aWeidenthaler, Claudia$$b4
001006568 7001_ $$0P:(DE-Juel1)187463$$aMeise, Ansgar$$b5
001006568 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b6
001006568 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
001006568 7001_ $$0P:(DE-HGF)0$$aKeenan, Luke$$b8
001006568 7001_ $$0P:(DE-HGF)0$$aPalkovits, Regina$$b9$$eCorresponding author
001006568 773__ $$0PERI:(DE-600)1468993-5$$a10.1016/j.jcat.2023.03.011$$gVol. 421, p. 134 - 144$$p134 - 144$$tJournal of catalysis$$v421$$x0021-9517$$y2023
001006568 8564_ $$uhttps://juser.fz-juelich.de/record/1006568/files/Dynamics%20of%20Palladium.pdf$$yPublished on 2023-03-08. Available in OpenAccess from 2025-03-08.
001006568 909CO $$ooai:juser.fz-juelich.de:1006568$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006568 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001006568 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001006568 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001006568 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001006568 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
001006568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187463$$aForschungszentrum Jülich$$b5$$kFZJ
001006568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b6$$kFZJ
001006568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
001006568 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
001006568 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b9$$kRWTH
001006568 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001006568 9141_ $$y2023
001006568 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001006568 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001006568 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001006568 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001006568 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CATAL : 2022$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001006568 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CATAL : 2022$$d2023-10-21
001006568 920__ $$lyes
001006568 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001006568 980__ $$ajournal
001006568 980__ $$aVDB
001006568 980__ $$aUNRESTRICTED
001006568 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001006568 9801_ $$aFullTexts