001006569 001__ 1006569
001006569 005__ 20230929112522.0
001006569 0247_ $$2doi$$a10.1021/acscatal.2c06123
001006569 0247_ $$2Handle$$a2128/34293
001006569 0247_ $$2WOS$$aWOS:000944488200001
001006569 037__ $$aFZJ-2023-01717
001006569 041__ $$aEnglish
001006569 082__ $$a540
001006569 1001_ $$0P:(DE-HGF)0$$aZhang, Kun$$b0
001006569 245__ $$aEthylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2
001006569 260__ $$aWashington, DC$$bACS$$c2023
001006569 3367_ $$2DRIVER$$aarticle
001006569 3367_ $$2DataCite$$aOutput Types/Journal article
001006569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681469330_5443
001006569 3367_ $$2BibTeX$$aARTICLE
001006569 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006569 3367_ $$00$$2EndNote$$aJournal Article
001006569 520__ $$aAlkene carbonylation, in which hydrogenation plays pivotal roles, is one of the most efficient method for the production of oxygenated chemicals like aldehydes, amides, and esters, among others. In this work, using in situ produced hydrogen via a water–gas shift (WGS) reaction, selective ethylene carbonylation to 3-pentanone was achieved instead of hydroformylation to propionaldehyde with gaseous H2 on a defective ceria-supported Rh catalyst. The interface of Rh/CeO2, which consists of oxygen vacancies and positively charged Rh, activates water, CO, and ethylene and the subsequent reactions, including the WGS reaction and ethylene carbonylation. The lean hydrogen circumstance created by the WGS reaction suppresses the hydrogenation of the propionyl group and promotes its ethylation to 3-pentanone. A redox pathway was proposed for the WGS reaction based on the in situ FTIR results, and the origin of hydrogen for ethylene carbonylation is water, as confirmed by a mass spectrometry (MS) study using d2-water as one of the reactants. This work provides a promising method for heavier ketone synthesis.
001006569 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001006569 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006569 7001_ $$0P:(DE-HGF)0$$aGuo, Qiang$$b1$$eCorresponding author
001006569 7001_ $$00000-0002-2403-9976$$aWang, Yehong$$b2$$eCorresponding author
001006569 7001_ $$0P:(DE-Juel1)180314$$aCao, Pengfei$$b3
001006569 7001_ $$0P:(DE-Juel1)195804$$aZhang, Bojian$$b4
001006569 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b5
001006569 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$eCorresponding author
001006569 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b7
001006569 7001_ $$00000-0002-9167-8743$$aWang, Feng$$b8$$eCorresponding author
001006569 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.2c06123$$gVol. 13, no. 5, p. 3164 - 3169$$n5$$p3164 - 3169$$tACS catalysis$$v13$$x2155-5435$$y2023
001006569 8564_ $$uhttps://juser.fz-juelich.de/record/1006569/files/acscatal.2c06123.pdf
001006569 8564_ $$uhttps://juser.fz-juelich.de/record/1006569/files/Ethylene%20carbonylation.pdf$$yPublished on 2023-02-17. Available in OpenAccess from 2024-02-17.
001006569 909CO $$ooai:juser.fz-juelich.de:1006569$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006569 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001006569 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001006569 9101_ $$0I:(DE-HGF)0$$60000-0002-2403-9976$$aExternal Institute$$b2$$kExtern
001006569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180314$$aForschungszentrum Jülich$$b3$$kFZJ
001006569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195804$$aForschungszentrum Jülich$$b4$$kFZJ
001006569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b5$$kFZJ
001006569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
001006569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
001006569 9101_ $$0I:(DE-HGF)0$$60000-0002-9167-8743$$aExternal Institute$$b8$$kExtern
001006569 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001006569 9141_ $$y2023
001006569 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001006569 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001006569 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001006569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2022$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001006569 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2022$$d2023-08-24
001006569 920__ $$lyes
001006569 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001006569 980__ $$ajournal
001006569 980__ $$aVDB
001006569 980__ $$aUNRESTRICTED
001006569 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001006569 9801_ $$aFullTexts