Home > Publications database > Ethylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2 > print |
001 | 1006569 | ||
005 | 20230929112522.0 | ||
024 | 7 | _ | |a 10.1021/acscatal.2c06123 |2 doi |
024 | 7 | _ | |a 2128/34293 |2 Handle |
024 | 7 | _ | |a WOS:000944488200001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01717 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Zhang, Kun |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Ethylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2 |
260 | _ | _ | |a Washington, DC |c 2023 |b ACS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1681469330_5443 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Alkene carbonylation, in which hydrogenation plays pivotal roles, is one of the most efficient method for the production of oxygenated chemicals like aldehydes, amides, and esters, among others. In this work, using in situ produced hydrogen via a water–gas shift (WGS) reaction, selective ethylene carbonylation to 3-pentanone was achieved instead of hydroformylation to propionaldehyde with gaseous H2 on a defective ceria-supported Rh catalyst. The interface of Rh/CeO2, which consists of oxygen vacancies and positively charged Rh, activates water, CO, and ethylene and the subsequent reactions, including the WGS reaction and ethylene carbonylation. The lean hydrogen circumstance created by the WGS reaction suppresses the hydrogenation of the propionyl group and promotes its ethylation to 3-pentanone. A redox pathway was proposed for the WGS reaction based on the in situ FTIR results, and the origin of hydrogen for ethylene carbonylation is water, as confirmed by a mass spectrometry (MS) study using d2-water as one of the reactants. This work provides a promising method for heavier ketone synthesis. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Guo, Qiang |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Wang, Yehong |0 0000-0002-2403-9976 |b 2 |e Corresponding author |
700 | 1 | _ | |a Cao, Pengfei |0 P:(DE-Juel1)180314 |b 3 |
700 | 1 | _ | |a Zhang, Bojian |0 P:(DE-Juel1)195804 |b 4 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 5 |
700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 6 |e Corresponding author |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 7 |
700 | 1 | _ | |a Wang, Feng |0 0000-0002-9167-8743 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1021/acscatal.2c06123 |g Vol. 13, no. 5, p. 3164 - 3169 |0 PERI:(DE-600)2584887-2 |n 5 |p 3164 - 3169 |t ACS catalysis |v 13 |y 2023 |x 2155-5435 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1006569/files/acscatal.2c06123.pdf |
856 | 4 | _ | |y Published on 2023-02-17. Available in OpenAccess from 2024-02-17. |u https://juser.fz-juelich.de/record/1006569/files/Ethylene%20carbonylation.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1006569 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 0000-0002-2403-9976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180314 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)195804 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130824 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 0000-0002-9167-8743 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS CATAL : 2022 |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-24 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ACS CATAL : 2022 |d 2023-08-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|