001     1006569
005     20230929112522.0
024 7 _ |a 10.1021/acscatal.2c06123
|2 doi
024 7 _ |a 2128/34293
|2 Handle
024 7 _ |a WOS:000944488200001
|2 WOS
037 _ _ |a FZJ-2023-01717
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Zhang, Kun
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ethylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2
260 _ _ |a Washington, DC
|c 2023
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681469330_5443
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alkene carbonylation, in which hydrogenation plays pivotal roles, is one of the most efficient method for the production of oxygenated chemicals like aldehydes, amides, and esters, among others. In this work, using in situ produced hydrogen via a water–gas shift (WGS) reaction, selective ethylene carbonylation to 3-pentanone was achieved instead of hydroformylation to propionaldehyde with gaseous H2 on a defective ceria-supported Rh catalyst. The interface of Rh/CeO2, which consists of oxygen vacancies and positively charged Rh, activates water, CO, and ethylene and the subsequent reactions, including the WGS reaction and ethylene carbonylation. The lean hydrogen circumstance created by the WGS reaction suppresses the hydrogenation of the propionyl group and promotes its ethylation to 3-pentanone. A redox pathway was proposed for the WGS reaction based on the in situ FTIR results, and the origin of hydrogen for ethylene carbonylation is water, as confirmed by a mass spectrometry (MS) study using d2-water as one of the reactants. This work provides a promising method for heavier ketone synthesis.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guo, Qiang
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Wang, Yehong
|0 0000-0002-2403-9976
|b 2
|e Corresponding author
700 1 _ |a Cao, Pengfei
|0 P:(DE-Juel1)180314
|b 3
700 1 _ |a Zhang, Bojian
|0 P:(DE-Juel1)195804
|b 4
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 5
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 6
|e Corresponding author
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 7
700 1 _ |a Wang, Feng
|0 0000-0002-9167-8743
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acscatal.2c06123
|g Vol. 13, no. 5, p. 3164 - 3169
|0 PERI:(DE-600)2584887-2
|n 5
|p 3164 - 3169
|t ACS catalysis
|v 13
|y 2023
|x 2155-5435
856 4 _ |u https://juser.fz-juelich.de/record/1006569/files/acscatal.2c06123.pdf
856 4 _ |y Published on 2023-02-17. Available in OpenAccess from 2024-02-17.
|u https://juser.fz-juelich.de/record/1006569/files/Ethylene%20carbonylation.pdf
909 C O |o oai:juser.fz-juelich.de:1006569
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-2403-9976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)195804
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0002-9167-8743
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2022
|d 2023-08-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21