001     1006570
005     20240403082808.0
024 7 _ |a 10.1073/pnas.2212075120
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 2128/34329
|2 Handle
024 7 _ |a 36634137
|2 pmid
024 7 _ |a WOS:001179845800001
|2 WOS
037 _ _ |a FZJ-2023-01718
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Uddin, Nasir
|0 0000-0002-4408-6657
|b 0
245 _ _ |a Ultrabroadband plasmon driving selective photoreforming of methanol under ambient conditions
260 _ _ |a Washington, DC
|c 2023
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681980627_23446
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoreforming of methanol has been envisioned as a promising pathway to produce H2 fuel which gained interest over the years. However, the formation of CO2/CO byproducts from this pathway has seen as a major hurdle to its practical realization because the evolution of CO2 and/or CO gases will negatively contribute toward the global-warming and/or environmental issues. To resolve these issues, herein, we discovered solar-driven ultrabroadband plasmonic photoreforming of pure methanol to pure, green and self-separable H2 energy production with zero-emission from an all-plasmonic Cu–WC/W catalytic system. The local electric field, lattice misfit strain, and the monodirectional flow of charge carriers by optical dielectric gradient work in synergy to enable the superior plasmonic photocatalysis in this all-plasmonic system.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sun, Zhehao
|0 0000-0001-5403-6912
|b 1
700 1 _ |a Langley, Julien
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lu, Haijao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cao, Pengfei
|0 P:(DE-Juel1)180314
|b 4
|e Corresponding author
700 1 _ |a Wibowo, Ary
|0 0000-0002-5631-4872
|b 5
700 1 _ |a Yin, Xinmao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tang, Chi Sin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Nguyen, Hieu T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Evans, Jack D.
|0 0000-0001-9521-2601
|b 9
700 1 _ |a Li, Xinzhe
|0 0000-0001-6636-0496
|b 10
700 1 _ |a Zhang, Xiaoliang
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 12
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 13
700 1 _ |a Wee, Andrew T. S.
|0 0000-0002-5828-4312
|b 14
700 1 _ |a Zhao, Haitao
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cox, Nicholas
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Yin, Zongyou
|0 0000-0002-0800-4490
|b 17
773 _ _ |a 10.1073/pnas.2212075120
|g Vol. 120, no. 3, p. e2212075120
|0 PERI:(DE-600)1461794-8
|n 3
|p e2212075120
|t Proceedings of the National Academy of Sciences of the United States of America
|v 120
|y 2023
|x 0027-8424
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006570/files/Ultra-broadband%20plasmon.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006570/files/pnas.2212075120.pdf
909 C O |o oai:juser.fz-juelich.de:1006570
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-4408-6657
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0001-5403-6912
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180314
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-5631-4872
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 0000-0001-9521-2601
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 0000-0001-6636-0496
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0002-5828-4312
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 0000-0002-0800-4490
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21