001006571 001__ 1006571
001006571 005__ 20230929112523.0
001006571 0247_ $$2doi$$a10.1039/D2NA00781A
001006571 0247_ $$2Handle$$a2128/34325
001006571 0247_ $$2pmid$$a37056630
001006571 0247_ $$2WOS$$aWOS:000959962500001
001006571 037__ $$aFZJ-2023-01719
001006571 041__ $$aEnglish
001006571 082__ $$a540
001006571 1001_ $$0P:(DE-HGF)0$$aGumbiowski, Nina$$b0
001006571 245__ $$aAutomated analysis of transmission electron micrographs of metallic nanoparticles by machine learning
001006571 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2023
001006571 3367_ $$2DRIVER$$aarticle
001006571 3367_ $$2DataCite$$aOutput Types/Journal article
001006571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681977073_22905
001006571 3367_ $$2BibTeX$$aARTICLE
001006571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006571 3367_ $$00$$2EndNote$$aJournal Article
001006571 520__ $$aMetallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background contrast as is demonstrated for ultrasmall gold nanoparticles (2 nm).
001006571 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001006571 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x1
001006571 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006571 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b1$$eCorresponding author
001006571 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b2$$eCorresponding author$$ufzj
001006571 7001_ $$00000-0002-1641-7068$$aEpple, Matthias$$b3$$eCorresponding author
001006571 773__ $$0PERI:(DE-600)2942874-9$$a10.1039/D2NA00781A$$gp. 10.1039.D2NA00781A$$n8$$p2318-2326 $$tNanoscale advances$$v5$$x2516-0230$$y2023
001006571 8564_ $$uhttps://juser.fz-juelich.de/record/1006571/files/Automated%20analysis.pdf$$yOpenAccess
001006571 8564_ $$uhttps://juser.fz-juelich.de/record/1006571/files/d2na00781a.pdf$$yOpenAccess
001006571 909CO $$ooai:juser.fz-juelich.de:1006571$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001006571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001006571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b2$$kFZJ
001006571 9101_ $$0I:(DE-HGF)0$$60000-0002-1641-7068$$aExternal Institute$$b3$$kExtern
001006571 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001006571 9141_ $$y2023
001006571 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001006571 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001006571 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
001006571 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
001006571 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006571 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
001006571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE ADV : 2022$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:05:58Z
001006571 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:05:58Z
001006571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:05:58Z
001006571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001006571 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001006571 920__ $$lyes
001006571 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001006571 980__ $$ajournal
001006571 980__ $$aVDB
001006571 980__ $$aUNRESTRICTED
001006571 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001006571 9801_ $$aFullTexts