001006572 001__ 1006572
001006572 005__ 20240403082805.0
001006572 0247_ $$2doi$$a10.1002/nano.202200240
001006572 0247_ $$2Handle$$a2128/34334
001006572 0247_ $$2WOS$$aWOS:001176583100006
001006572 037__ $$aFZJ-2023-01720
001006572 041__ $$aEnglish
001006572 082__ $$a500
001006572 1001_ $$0P:(DE-HGF)0$$aGöhl, Daniel$$b0$$eCorresponding author
001006572 245__ $$aCore‐passivation: A concept for stable core‐shell nanoparticles in aqueous electrocatalysis
001006572 260__ $$aWeinheim, Germany$$bWiley-VCH$$c2023
001006572 3367_ $$2DRIVER$$aarticle
001006572 3367_ $$2DataCite$$aOutput Types/Journal article
001006572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681988747_28102
001006572 3367_ $$2BibTeX$$aARTICLE
001006572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006572 3367_ $$00$$2EndNote$$aJournal Article
001006572 520__ $$aThe stability of nanoparticles is a major challenge in thermal and electrocatalysis. This is especially true for core-shell nanoparticles where only a few monolayers of noble metal protect the usually non-noble core material. In this work, we utilize the practical nobility concept to engineer stable core-shell nanoparticles with a self-passivating core material. Specifically, tantalum carbide as core material in combination with a 1–3 monolayer thick platinum shell exhibits exceptional stability in aqueous media. The core-shell catalyst shows no sign of structural changes after 10,000 degradation cycles up to 1.0 VRHE. Due to the efficient passivation of tantalum carbide at the solid/liquid interface, the dissolution reduces by a factor of eight compared to bare Pt. Our findings confirm that passivating core materials are highly beneficial for the stabilization of core-shell nanomaterials in aqueous media. They open up new ways for the rational design of cost-efficient but stable non-noble core – platinum shell nanoparticles where harsh, oxidizing conditions are employed
001006572 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001006572 536__ $$0G:(GEPRIS)DFG-100455697$$aPOREForm - Entwicklung von porenoptimierten Katalysatoren u. Katalysatorschichten f. Hochleistungs-Polmer-Elektrolyt-Membran- Brennstoffzellen -- Höchstauflösende elektronenmikroskopische Charakterisierung der Porenstruktur u. Katalysator-Ionomer Grenzflächen (DFG-100455697)$$cDFG-100455697$$x1
001006572 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006572 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b1$$eCorresponding author
001006572 7001_ $$0P:(DE-HGF)0$$aWang, Zhenshu$$b2
001006572 7001_ $$0P:(DE-HGF)0$$aKang, Jin Soo$$b3
001006572 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b4
001006572 7001_ $$0P:(DE-Juel1)168125$$aMayrhofer, Karl$$b5
001006572 7001_ $$0P:(DE-HGF)0$$aRomán-Leshkov, Yuriy$$b6
001006572 7001_ $$0P:(DE-Juel1)196889$$aLedendecker, Marc$$b7$$eCorresponding author
001006572 773__ $$0PERI:(DE-600)3042763-0$$a10.1002/nano.202200240$$gp. nano.202200240$$n4$$p 271-277$$tNano select$$v4$$x2688-4011$$y2023
001006572 8564_ $$uhttps://juser.fz-juelich.de/record/1006572/files/Core%E2%80%90passivation.pdf$$yOpenAccess
001006572 8564_ $$uhttps://juser.fz-juelich.de/record/1006572/files/Nano%20Select%20-%202023%20-%20G%20hl%20-%20Core%E2%80%90passivation%20A%20concept%20for%20stable%20core%E2%80%90shell%20nanoparticles%20in%20aqueous%20electrocatalysis.pdf$$yOpenAccess
001006572 909CO $$ooai:juser.fz-juelich.de:1006572$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006572 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001006572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b1$$kFZJ
001006572 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001006572 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001006572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b4$$kFZJ
001006572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168125$$aForschungszentrum Jülich$$b5$$kFZJ
001006572 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
001006572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196889$$aForschungszentrum Jülich$$b7$$kFZJ
001006572 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001006572 9141_ $$y2023
001006572 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006572 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-09-30T11:42:03Z
001006572 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-09-30T11:42:03Z
001006572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006572 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25
001006572 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25
001006572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-31
001006572 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-09-30T11:42:03Z
001006572 920__ $$lyes
001006572 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001006572 980__ $$ajournal
001006572 980__ $$aVDB
001006572 980__ $$aUNRESTRICTED
001006572 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001006572 9801_ $$aFullTexts