001     1006572
005     20240403082805.0
024 7 _ |a 10.1002/nano.202200240
|2 doi
024 7 _ |a 2128/34334
|2 Handle
024 7 _ |a WOS:001176583100006
|2 WOS
037 _ _ |a FZJ-2023-01720
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Göhl, Daniel
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Core‐passivation: A concept for stable core‐shell nanoparticles in aqueous electrocatalysis
260 _ _ |a Weinheim, Germany
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681988747_28102
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stability of nanoparticles is a major challenge in thermal and electrocatalysis. This is especially true for core-shell nanoparticles where only a few monolayers of noble metal protect the usually non-noble core material. In this work, we utilize the practical nobility concept to engineer stable core-shell nanoparticles with a self-passivating core material. Specifically, tantalum carbide as core material in combination with a 1–3 monolayer thick platinum shell exhibits exceptional stability in aqueous media. The core-shell catalyst shows no sign of structural changes after 10,000 degradation cycles up to 1.0 VRHE. Due to the efficient passivation of tantalum carbide at the solid/liquid interface, the dissolution reduces by a factor of eight compared to bare Pt. Our findings confirm that passivating core materials are highly beneficial for the stabilization of core-shell nanomaterials in aqueous media. They open up new ways for the rational design of cost-efficient but stable non-noble core – platinum shell nanoparticles where harsh, oxidizing conditions are employed
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a POREForm - Entwicklung von porenoptimierten Katalysatoren u. Katalysatorschichten f. Hochleistungs-Polmer-Elektrolyt-Membran- Brennstoffzellen -- Höchstauflösende elektronenmikroskopische Charakterisierung der Porenstruktur u. Katalysator-Ionomer Grenzflächen (DFG-100455697)
|0 G:(GEPRIS)DFG-100455697
|c DFG-100455697
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Paciok, Paul
|0 P:(DE-Juel1)151296
|b 1
|e Corresponding author
700 1 _ |a Wang, Zhenshu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kang, Jin Soo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 4
700 1 _ |a Mayrhofer, Karl
|0 P:(DE-Juel1)168125
|b 5
700 1 _ |a Román-Leshkov, Yuriy
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ledendecker, Marc
|0 P:(DE-Juel1)196889
|b 7
|e Corresponding author
773 _ _ |a 10.1002/nano.202200240
|g p. nano.202200240
|0 PERI:(DE-600)3042763-0
|n 4
|p 271-277
|t Nano select
|v 4
|y 2023
|x 2688-4011
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006572/files/Core%E2%80%90passivation.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006572/files/Nano%20Select%20-%202023%20-%20G%20hl%20-%20Core%E2%80%90passivation%20A%20concept%20for%20stable%20core%E2%80%90shell%20nanoparticles%20in%20aqueous%20electrocatalysis.pdf
909 C O |o oai:juser.fz-juelich.de:1006572
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151296
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168125
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)196889
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-09-30T11:42:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-09-30T11:42:03Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-09-30T11:42:03Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21