Home > Publications database > Core‐passivation: A concept for stable core‐shell nanoparticles in aqueous electrocatalysis > print |
001 | 1006572 | ||
005 | 20240403082805.0 | ||
024 | 7 | _ | |a 10.1002/nano.202200240 |2 doi |
024 | 7 | _ | |a 2128/34334 |2 Handle |
024 | 7 | _ | |a WOS:001176583100006 |2 WOS |
037 | _ | _ | |a FZJ-2023-01720 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Göhl, Daniel |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Core‐passivation: A concept for stable core‐shell nanoparticles in aqueous electrocatalysis |
260 | _ | _ | |a Weinheim, Germany |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1681988747_28102 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The stability of nanoparticles is a major challenge in thermal and electrocatalysis. This is especially true for core-shell nanoparticles where only a few monolayers of noble metal protect the usually non-noble core material. In this work, we utilize the practical nobility concept to engineer stable core-shell nanoparticles with a self-passivating core material. Specifically, tantalum carbide as core material in combination with a 1–3 monolayer thick platinum shell exhibits exceptional stability in aqueous media. The core-shell catalyst shows no sign of structural changes after 10,000 degradation cycles up to 1.0 VRHE. Due to the efficient passivation of tantalum carbide at the solid/liquid interface, the dissolution reduces by a factor of eight compared to bare Pt. Our findings confirm that passivating core materials are highly beneficial for the stabilization of core-shell nanomaterials in aqueous media. They open up new ways for the rational design of cost-efficient but stable non-noble core – platinum shell nanoparticles where harsh, oxidizing conditions are employed |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a POREForm - Entwicklung von porenoptimierten Katalysatoren u. Katalysatorschichten f. Hochleistungs-Polmer-Elektrolyt-Membran- Brennstoffzellen -- Höchstauflösende elektronenmikroskopische Charakterisierung der Porenstruktur u. Katalysator-Ionomer Grenzflächen (DFG-100455697) |0 G:(GEPRIS)DFG-100455697 |c DFG-100455697 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Paciok, Paul |0 P:(DE-Juel1)151296 |b 1 |e Corresponding author |
700 | 1 | _ | |a Wang, Zhenshu |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kang, Jin Soo |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 4 |
700 | 1 | _ | |a Mayrhofer, Karl |0 P:(DE-Juel1)168125 |b 5 |
700 | 1 | _ | |a Román-Leshkov, Yuriy |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Ledendecker, Marc |0 P:(DE-Juel1)196889 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1002/nano.202200240 |g p. nano.202200240 |0 PERI:(DE-600)3042763-0 |n 4 |p 271-277 |t Nano select |v 4 |y 2023 |x 2688-4011 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006572/files/Core%E2%80%90passivation.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006572/files/Nano%20Select%20-%202023%20-%20G%20hl%20-%20Core%E2%80%90passivation%20A%20concept%20for%20stable%20core%E2%80%90shell%20nanoparticles%20in%20aqueous%20electrocatalysis.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1006572 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)151296 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)168125 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)196889 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-09-30T11:42:03Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-09-30T11:42:03Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-25 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-31 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-09-30T11:42:03Z |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|